On regularity of generalized Hermite interpolation

被引:2
|
作者
Shekhtman, Boris [1 ]
机构
[1] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
关键词
Hermite interpolation; Regularity; Generalized Hermite interpolation; MULTIVARIATE INTERPOLATION; SOLVABILITY;
D O I
10.1016/j.cagd.2015.12.006
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this note we study the regularity of generalized Hermite interpolation and compare it to that of classical Hermite interpolation. While every Hermite interpolation scheme is regular in one variable, the "classical Hermite interpolation schemes" in several variables are regular if and only if they are supported at one point. In this note we exhibit some regular generalized Hermite interpolation schemes supported at two points and study some limitation of existence of such schemes. The existence of such schemes provides a class of counterexamples to a conjecture of Jia and Sharma. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:134 / 139
页数:6
相关论文
共 50 条
  • [41] HERMITE INTERPOLATION WITH A PAIR OF SPIRALS
    MEEK, DS
    THOMAS, RSD
    COMPUTER AIDED GEOMETRIC DESIGN, 1993, 10 (06) : 491 - 507
  • [42] AITKEN-HERMITE INTERPOLATION
    GERSHINSKY, M
    LEVINE, DA
    JOURNAL OF THE ACM, 1964, 11 (03) : 352 - &
  • [43] Norms of hermite interpolation operators
    Ogawa, S
    Kida, S
    Kitahara, K
    Igano, Y
    APPLIED MATHEMATICS LETTERS, 1996, 9 (04) : 9 - 14
  • [44] A Note on Modified Hermite Interpolation
    R. Kozera
    M. Wilkołazka
    Mathematics in Computer Science, 2020, 14 : 223 - 239
  • [45] Hermite interpolation in the roots of unity
    Goodman, TNT
    Ivanov, KG
    Sharma, A
    JOURNAL OF APPROXIMATION THEORY, 1996, 84 (01) : 41 - 60
  • [46] Approximation by Discrete Hermite Interpolation
    Chen, Fengmin
    Wong, Patricia J. Y.
    11TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV 2010), 2010, : 2272 - 2277
  • [47] INTERPOLATION BY HERMITE PARABOLIC SPLINES
    KVASOV, BI
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1984, (05): : 25 - 32
  • [48] On a class of Hermite interpolation problems
    Hakop A. Hakopian
    Advances in Computational Mathematics, 2000, 12 : 303 - 309
  • [49] HERMITE INTERPOLATION - THE BARYCENTRIC APPROACH
    SCHNEIDER, C
    WERNER, W
    COMPUTING, 1991, 46 (01) : 35 - 51
  • [50] TRIANGULAR HERMITE INTERPOLATION IN PLANE
    FREDERIC.PO
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (03): : 549 - &