Scheduling malleable parallel tasks: An asymptotic fully polynomial time approximation scheme

被引:39
|
作者
Jansen, K [1 ]
机构
[1] Univ Kiel, Inst Informat & Prakt Math, D-24098 Kiel, Germany
关键词
scheduling; malleable tasks; approximation algorithms;
D O I
10.1007/s00453-003-1078-6
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A malleable parallel task is one whose execution time is a function of the number of (identical) processors allotted to it. We study the problem of scheduling a set of n independent malleable tasks on an arbitrary number m of parallel processors and propose an asymptotic fully polynomial time approximation scheme. For any fixed epsilon > 0, the algorithm computes a non-preemptive schedule of length at most (1 + epsilon) times the optimum (plus an additive term) and has running time polynomial in n, m and 1/epsilon.
引用
收藏
页码:59 / 81
页数:23
相关论文
共 50 条
  • [41] A Fully Polynomial Time Approximation Scheme for Constrained MDPs under Local Transitions
    Khonji, Majid
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 1782 - 1789
  • [42] A new fully polynomial time approximation scheme for the interval subset sum problem
    Rui Diao
    Ya-Feng Liu
    Yu-Hong Dai
    Journal of Global Optimization, 2017, 68 : 749 - 775
  • [43] A fully polynomial-time approximation scheme for approximating a sum of random variables
    Li, Jian
    Shi, Tianlin
    OPERATIONS RESEARCH LETTERS, 2014, 42 (03) : 197 - 202
  • [44] A fully polynomial time approximation scheme for the probability maximizing shortest path problem
    Lee, Jisun
    Joung, Seulgi
    Lee, Kyungsik
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2022, 300 (01) : 35 - 45
  • [45] A Fully Polynomial-Time Approximation Scheme for Speed Scaling with a Sleep State
    Antoniadis, Antonios
    Huang, Chien-Chung
    Ott, Sebastian
    ALGORITHMICA, 2019, 81 (09) : 3725 - 3745
  • [46] A new fully polynomial time approximation scheme for the interval subset sum problem
    Diao, Rui
    Liu, Ya-Feng
    Dai, Yu-Hong
    JOURNAL OF GLOBAL OPTIMIZATION, 2017, 68 (04) : 749 - 775
  • [47] Implementing a fully polynomial time approximation scheme for all terminal network reliability
    Karger, DR
    Tai, RP
    PROCEEDINGS OF THE EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 1997, : 334 - 343
  • [48] Minimizing Weighted Mean Completion Time for Malleable Tasks Scheduling
    Beaumont, Olivier
    Bonichon, Nicolas
    Eyraud-Dubois, Lionel
    Marchal, Loris
    2012 IEEE 26TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS), 2012, : 273 - 284
  • [49] A 3/2-approximation algorithm for scheduling independent monotonic malleable tasks
    Mounie, Gregory
    Rapine, Christophe
    Trystram, Denis
    SIAM JOURNAL ON COMPUTING, 2007, 37 (02) : 401 - 412
  • [50] A 3.42-Approximation Algorithm for Scheduling Malleable Tasks under Precedence Constraints
    Chen, Chi-Yeh
    Chu, Chih-Ping
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2013, 24 (08) : 1479 - 1488