UNSUPERVISED CLASSIFIER SELECTION APPROACH FOR HYPERSPECTRAL IMAGE CLASSIFICATION

被引:2
|
作者
Damodaran, Bharath Bhushan [1 ]
Courty, Nicolas [1 ]
Lefevre, Sebastien [1 ]
机构
[1] Univ Bretagne Sud, UMR 6074, IRISA, F-56000 Vannes, France
关键词
Hyperspectral image classification; Multiple classifier system; Classifier selection; Classifier combination; Ensemble learning;
D O I
10.1109/IGARSS.2016.7730332
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Generating accurate and robust classification maps from hyperspectral imagery (HSI) depends on the choice of the classifiers and input data sources. Choosing the appropriate classifier for a problem at hand is a tedious task. Multiple classifier system (MCS) combines the relative merits of various classifiers to generate robust classification maps. However, the presence of inaccurate classifiers may degrade the classification performance of MCS. In this paper, we propose an unsupervised classifier selection strategy to select an appropriate subset of accurate classifiers for the multiple classifier combination from a large pool of classifiers. The experimental results with two HSI show that the proposed classifier selection method overcomes the impact of inaccurate classifiers and significantly increases the classification accuracy.
引用
收藏
页码:5111 / 5114
页数:4
相关论文
共 50 条
  • [21] Unsupervised band selection based on artificial bee colony algorithm for hyperspectral image classification
    Xie, Fuding
    Li, Fangfei
    Lei, Cunkuan
    Yang, Jun
    Zhang, Yong
    APPLIED SOFT COMPUTING, 2019, 75 : 428 - 440
  • [22] Unsupervised Band Selection Using Block-Diagonal Sparsity for Hyperspectral Image Classification
    Wang, Jingyu
    Zhang, Ke
    Wang, Pei
    Madani, Kurosh
    Sabourin, Christophe
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (11) : 2062 - 2066
  • [23] Heterogeneous Cuckoo Search-Based Unsupervised Band Selection for Hyperspectral Image Classification
    Wu, Meng
    Ou, Xianfeng
    Lu, Youli
    Li, Wujing
    Yu, Dan
    Liu, Zhihao
    Ji, Chengtao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 16
  • [24] Unsupervised classification of hyperspectral images using an Adaptive Vector Tunnel classifier
    Demirci, S.
    Erer, I.
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XVIII, 2012, 8537
  • [25] Hyperspectral Image Classification via Basic Thresholding Classifier
    Toksoz, Mehmet Altan
    Ulusoy, Ilkay
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (07): : 4039 - 4051
  • [26] A New Convolutional Kernel Classifier for Hyperspectral Image Classification
    Ansari, Mohsen
    Homayouni, Saeid
    Safari, Abdolreza
    Niazmardi, Saeid
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 11240 - 11256
  • [27] Hyperspectral Image Classification With Data Augmentation and Classifier Fusion
    Wang, Cong
    Zhang, Lei
    Wei, Wei
    Zhang, Yanning
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (08) : 1420 - 1424
  • [28] A novel unsupervised bands selection algorithm for hyperspectral image
    Du, Xiaoping
    Chen, Hang
    Liu, Zhengjun
    Yang, Chengwei
    OPTIK, 2018, 158 : 985 - 996
  • [29] UNSUPERVISED STACKED CAPSULE AUTOENCODER FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Pan, Erting
    Ma, Yong
    Mei, Xiaoguang
    Fan, Fan
    Ma, Jiayi
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1825 - 1829
  • [30] DECISION FUSION FOR SUPERVISED AND UNSUPERVISED HYPERSPECTRAL IMAGE CLASSIFICATION
    Yang, He
    Ma, Ben
    Du, Qian
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 3328 - 3331