Adaptive neuro-fuzzy inference system based automatic generation control

被引:74
|
作者
Hosseini, S. H. [1 ]
Etemadi, A. H. [1 ]
机构
[1] Sharif Univ Technol, Dept Elect Engn, Tehran, Iran
关键词
ANFIS; automatic generation control; frequency relaxation; particle swarm optimization;
D O I
10.1016/j.epsr.2007.10.007
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Fixed gain controllers for automatic generation control are designed at nominal operating conditions and fail to provide best control performance over a wide range of operating conditions. So, to keep system performance near its optimum, it is desirable to track the operating conditions and use updated parameters to compute control gains. A control scheme based on artificial neuro-fuzzy inference system (ANFIS), which is trained by the results of off-line studies obtained using particle swarm optimization, is proposed in this paper to optimize and update control gains in real-time according to load variations. Also, frequency relaxation is implemented using ANFIS. The efficiency of the proposed method is demonstrated via simulations. Compliance of the proposed method with NERC control performance standard is verified. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1230 / 1239
页数:10
相关论文
共 50 条
  • [21] Automatic Classification of Antepartum Cardiotocography Using Fuzzy Clustering and Adaptive Neuro-Fuzzy Inference System
    Fei, Yue
    Huang, Xiaoqian
    Chen, Qinqun
    Chen, Jiamin
    Li, Li
    Hong, Jiaming
    Hao, Zhifeng
    Wei, Hang
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 1938 - 1942
  • [22] Channel estimation based on adaptive neuro-fuzzy inference system in OFDM
    Seyman, M. Nuri
    Taspinar, Necmi
    [J]. IEICE TRANSACTIONS ON COMMUNICATIONS, 2008, E91B (07) : 2426 - 2430
  • [23] Adaptive Neuro-Fuzzy Inference System for drought forecasting
    Bacanli, Ulker Guner
    Firat, Mahmut
    Dikbas, Fatih
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2009, 23 (08) : 1143 - 1154
  • [24] Prediction of amount of imports based on adaptive neuro-fuzzy inference system
    Chang, Zhipeng
    Liu, Liping
    Li, Zhiping
    [J]. 2007 INTERNATIONAL CONFERENCE ON INTELLIGENT PERVASIVE COMPUTING, PROCEEDINGS, 2007, : 437 - 440
  • [25] ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM BASED MODELLING OF VEHICLE GUIDANCE
    Avdagic, Zikrija
    Cernica, Elvedin
    Omanovic, Samir
    [J]. JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2019, 14 (04): : 2116 - 2131
  • [26] ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM FOR END MILLING
    Markopoulos, Angelos P.
    Georgiopoulos, Sotirios
    Kinigalakis, Myron
    Manolakos, Dimitrios E.
    [J]. JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2016, 11 (09) : 1234 - 1248
  • [27] Diagnosing Breast Cancer Based on the Adaptive Neuro-Fuzzy Inference System
    Chidambaram, S.
    Ganesh, S. Sankar
    Karthick, Alagar
    Jayagopal, Prabhu
    Balachander, Bhuvaneswari
    Manoharan, S.
    [J]. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2022, 2022
  • [28] State of charge estimation based on adaptive neuro-fuzzy inference system
    Guan Jiansheng
    Xu Wenjin
    Zhang Abu
    [J]. ICCSE'2006: Proceedings of the First International Conference on Computer Science & Education: ADVANCED COMPUTER TECHNOLOGY, NEW EDUCATION, 2006, : 840 - 843
  • [29] Adaptive Neuro-Fuzzy Inference System for Financial Evaluation
    Orhei, Dragomir
    [J]. VISION 2020: SUSTAINABLE GROWTH, ECONOMIC DEVELOPMENT, AND GLOBAL COMPETITIVENESS, VOLS 1-5, 2014, : 241 - 245
  • [30] Adaptive Neuro-Fuzzy Inference System for drought forecasting
    Ulker Guner Bacanli
    Mahmut Firat
    Fatih Dikbas
    [J]. Stochastic Environmental Research and Risk Assessment, 2009, 23 : 1143 - 1154