Machine learning coarse grained models for water

被引:134
|
作者
Chan, Henry [1 ]
Cherukara, Mathew J. [1 ]
Narayanan, Badri [1 ,3 ]
Loeffler, Troy D. [1 ]
Benmore, Chris [2 ]
Gray, Stephen K. [1 ,4 ]
Sankaranarayanan, Subramanian K. R. S. [1 ,4 ]
机构
[1] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA
[2] Argonne Natl Lab, X R y Sci Div, Argonne, IL 60439 USA
[3] Univ Louisville, Dept Mech Engn, Louisville, KY 40292 USA
[4] Univ Chicago, Consortium Adv Sci & Engn, Chicago, IL 60637 USA
关键词
LIQUID WATER; CUBIC ICE; STACKING DISORDER; MOLECULAR-MODEL; SELF-DIFFUSION; FREE-ENERGY; TRANSFORMATIONS; CRYSTALLIZATION; TIP4P/2005; NUCLEATION;
D O I
10.1038/s41467-018-08222-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An accurate and computationally efficient molecular level description of mesoscopic behavior of ice-water systems remains a major challenge. Here, we introduce a set of machine-learned coarse-grained (CG) models (ML-BOP, ML-BOPdih, and ML-mW) that accurately describe the structure and thermodynamic anomalies of both water and ice at mesoscopic scales, all at two orders of magnitude cheaper computational cost than existing atomistic models. In a significant departure from conventional force-field fitting, we use a multilevel evolutionary strategy that trains CG models against not just energetics from first-principles and experiments but also temperature-dependent properties inferred from on-the-fly molecular dynamics (-10' s of milliseconds of overall trajectories). Our ML BOP models predict both the correct experimental melting point of ice and the temperature of maximum density of liquid water that remained elusive to-date. Our ML workflow navigates efficiently through the high-dimensional parameter space to even improve upon existing high-quality CG models (e.g. mW model).
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Coarse-Grained Protein Models and Their Applications
    Kmiecik, Sebastian
    Gront, Dominik
    Kolinski, Michal
    Wieteska, Lukasz
    Dawid, Aleksandra Elzbieta
    Kolinski, Andrzej
    [J]. CHEMICAL REVIEWS, 2016, 116 (14) : 7898 - 7936
  • [42] Lipophilicity of Coarse-Grained Cholesterol Models
    Fornasier, Franccesca
    Souza, Lucas M. P.
    Souza, Felipe R.
    Reynaud, Franceline
    Pimentel, Andre S.
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (02) : 569 - 577
  • [43] Coarse grained models, molecular dynamics and GPUs
    Travesset, Alex
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [44] Micellization behavior of coarse grained surfactant models
    Sanders, Samantha A.
    Panagiotopoulos, Athanassios Z.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (11):
  • [45] Coarse-grained models for macromolecular systems
    Hugouvieux, V.
    [J]. NEUTRONS ET SIMULATIONS, JDN 18, 2010, : 285 - 300
  • [46] Coarse-grained models for protein aggregation
    Wu, Chun
    Shea, Joan-Emma
    [J]. CURRENT OPINION IN STRUCTURAL BIOLOGY, 2011, 21 (02) : 209 - 220
  • [47] Pushing coarse-grained models beyond the continuum limit using equation learning
    VandenHeuvel, Daniel J.
    Buenzli, Pascal R.
    Simpson, Matthew J.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2024, 480 (2281):
  • [48] Coarse grained approach for volume conserving models
    Hansmann, D.
    Buceta, R. C.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (14) : 3018 - 3027
  • [49] Utilizing Machine Learning to Greatly Expand the Range and Accuracy of Bottom-Up Coarse-Grained Models through Virtual Particles
    Sahrmann, Patrick G.
    Loose, Timothy D.
    Durumeric, Aleksander E. P.
    Voth, Gregory A.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (14) : 4402 - 4413
  • [50] Exploring the utility of coarse-grained water models for computational studies of interfacial systems
    He, Xibing
    Shinoda, Wataru
    DeVane, Russell
    Klein, Michael L.
    [J]. MOLECULAR PHYSICS, 2010, 108 (15) : 2007 - 2020