Disorderless Quasi-localization of Polar Gases in One-Dimensional Lattices

被引:22
|
作者
Li, W. [1 ]
Dhar, A. [1 ]
Deng, X. [1 ]
Kasamatsu, K. [2 ]
Barbiero, L. [3 ]
Santos, L. [1 ]
机构
[1] Leibniz Univ Hannover, Inst Theoret Phys, Appelstr 2, D-30167 Hannover, Germany
[2] Kindai Univ, Dept Phys, Higashiosaka, Osaka 5778502, Japan
[3] Univ Libre Bruxelles, Ctr Nonlinear Phenomena & Complex Syst, CP 231,Campus Plaine, B-1050 Brussels, Belgium
关键词
MANY-BODY LOCALIZATION; ANDERSON LOCALIZATION; QUANTUM; THERMALIZATION; PROPAGATION; DYNAMICS; SYSTEM;
D O I
10.1103/PhysRevLett.124.010404
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
One-dimensional polar gases in deep optical lattices present a severely constrained dynamics due to the interplay between dipolar interactions, energy conservation, and finite bandwidth. The appearance of dynamically bound nearest-neighbor dimers enhances the role of the 1/r(3) dipolar tail, resulting in the absence of external disorder, in quasi-localization via dimer clustering for very low densities and moderate dipole strengths. Furthermore, even weak dipoles allow for the formation of self-bound superfluid lattice droplets with a finite doping of mobile, but confined, holons. Our results, which can be extrapolated to other power-law interactions, are directly relevant for current and future lattice experiments with magnetic atoms and polar molecules.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [21] Anderson localization and nonlinearity in one-dimensional disordered photonic lattices
    Lahini, Yoav
    Avidan, Assaf
    Pozzi, Francesca
    Sorel, Marc
    Morandotti, Roberto
    Christodoulides, Demetrios N.
    Silberberg, Yaron
    PHYSICAL REVIEW LETTERS, 2008, 100 (01)
  • [22] Inelastic collisions in ultracold gases confined by one-dimensional optical lattices
    Li, Zhiying
    PHYSICAL REVIEW A, 2010, 81 (01):
  • [23] Hidden order in bosonic gases confined in one-dimensional optical lattices
    Amico, L.
    Mazzarella, G.
    Pasini, S.
    Cataliotti, F. S.
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [24] Bosonization and entanglement spectrum for one-dimensional polar bosons on disordered lattices
    Deng, Xiaolong
    Citro, Roberta
    Orignac, Edmond
    Minguzzi, Anna
    Santos, Luis
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [25] Electrical analogue of one-dimensional and quasi-one-dimensional Aubry–André–Harper lattices
    Sudin Ganguly
    Santanu K. Maiti
    Scientific Reports, 13
  • [26] QUASI-LOCALIZATION OF EXTRA ELECTRONS IN HIGH-DENSITY METHANE AND ETHANE GASES
    GEE, N
    FREEMAN, GR
    CHEMICAL PHYSICS LETTERS, 1979, 60 (03) : 439 - 440
  • [27] ELECTRONIC-PROPERTIES FOR A CLASS OF ONE-DIMENSIONAL QUASI-LATTICES
    HUANG, XQ
    MO, D
    LIU, YY
    ACTA PHYSICA SINICA-OVERSEAS EDITION, 1994, 3 (01): : 56 - 63
  • [28] Stabilizing confined quasiparticle dynamics in one-dimensional polar lattice gases
    Zhang, Guo-Qing
    Quezada, L. F.
    PHYSICAL REVIEW B, 2023, 108 (09)
  • [29] One-dimensional Kondo lattices
    Shibata, N
    DENSITY-MATRIX RENORMALIZATION: A NEW NUMERICAL METHOD IN PHYSICS, 1999, 528 : 303 - 310
  • [30] Topological Superconductor to Anderson Localization Transition in One-Dimensional Incommensurate Lattices
    Cai, Xiaoming
    Lang, Li-Jun
    Chen, Shu
    Wang, Yupeng
    PHYSICAL REVIEW LETTERS, 2013, 110 (17)