Rapid melting and revitrification as an approach to microsecond time-resolved cryo-electron microscopy

被引:28
|
作者
Voss, Jonathan M. [1 ]
Harder, Oliver F. [1 ]
Olshin, Pavel K. [1 ]
Drabbels, Marcel [1 ]
Lorenz, Ulrich J. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Mol Nanodynam, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
Protein dynamics; Time-resolved cryo-electron microscopy; Single-particle observation; In situ transmission electron microscopy; Graphene liquid cells; X-RAY-SCATTERING; CRYO-EM; STRUCTURAL BIOLOGY; ELECTRON; PROTEIN; WATER; CHEMISTRY; FUTURE; STATES; ICE;
D O I
10.1016/j.cplett.2021.138812
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Proteins typically undergo dynamics on the microsecond to millisecond timescale, which is much faster than the time resolution of cryo-electron microscopy. Here, we propose a novel approach for microsecond time-resolved cryo-electron microscopy that involves melting a cryo specimen in situ with a laser beam. The sample remains liquid for the duration of the laser pulse, offering a tunable time window in which the dynamics of embedded particles can be induced in a liquid environment. After the laser pulse, the sample vitrifies, trapping particles in their transient configurations. As a proof of principle, we study the disassembly of particles after they incur structural damage.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] A scripting language approach to control software for cryo-electron microscopy
    Baxter, WT
    Leith, AD
    Frank, J
    2002 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, PROCEEDINGS, 2002, : 301 - 304
  • [32] CRYO-ELECTRON MICROSCOPY SHAPES UP
    Baker, Monya
    NATURE, 2018, 561 (7724) : 565 - 567
  • [33] The cryo-electron microscopy structure of huntingtin
    Qiang Guo
    Jingdong Bin Huang
    Manuel Cheng
    Tatjana Seefelder
    Günter Engler
    Patrick Pfeifer
    Markus Oeckl
    Franziska Otto
    Melanie Moser
    Alexander Maurer
    Wolfgang Pautsch
    Rubén Baumeister
    Stefan Fernández-Busnadiego
    Nature, 2018, 555 : 117 - 120
  • [34] Biological cryo-electron microscopy in China
    Wang, Hong-Wei
    Lei, Jianlin
    Shi, Yigong
    PROTEIN SCIENCE, 2017, 26 (01) : 16 - 31
  • [35] Cryo-electron microscopy of membrane proteins
    Thonghin, Nopnithi
    Kargas, Vasileios
    Clews, Jack
    Ford, Robert C.
    METHODS, 2018, 147 : 176 - 186
  • [36] Cryo-electron microscopy of vitreous sections
    Al-Amoudi, A
    Chang, JJ
    Leforestier, A
    McDowall, A
    Salamin, LM
    Norlén, LPO
    Richter, K
    Blanc, NS
    Studer, D
    Dubochet, J
    EMBO JOURNAL, 2004, 23 (18): : 3583 - 3588
  • [37] A max-cut approach to heterogeneity in cryo-electron microscopy
    Aizenbud, Yariv
    Shkolnisky, Yoel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 479 (01) : 1004 - 1029
  • [38] Cryo-electron microscopy of the giant mimivirus
    Xiao, CA
    Chipman, PR
    Battisti, AJ
    Bowman, VD
    Renesto, P
    Raoult, D
    Rossmann, MG
    JOURNAL OF MOLECULAR BIOLOGY, 2005, 353 (03) : 493 - 496
  • [39] The resolution revolution in cryo-electron microscopy
    Neumann, Emmanuelle
    Estrozi, Leandro Farias
    Effantin, Gregory
    Breyton, Cecile
    Schoehn, Guy
    M S-MEDECINE SCIENCES, 2017, 33 (12): : 1111 - 1117
  • [40] Cryo-electron microscopy of chromatin biology
    Wilson, Marcus D.
    Costa, Alessandro
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2017, 73 : 541 - 548