Liquid air energy storage: a potential low emissions and efficient storage system

被引:28
|
作者
Antonelli, Marco [1 ]
Desideri, Umberto [1 ]
Giglioli, Romano [1 ]
Paganucci, Fabrizio [2 ]
Pasini, Gianluca [1 ]
机构
[1] Univ Pisa, DESTEC, I-56122 Pisa, Italy
[2] Univ Pisa, DICI, I-56122 Pisa, Italy
关键词
Liquid Air Energy Storage; Cryogenic; Energy Storage; Air Expansion;
D O I
10.1016/j.egypro.2016.06.100
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The current increase in the deployment of new renewable electricity generation systems is making energy storage more and more important at small and large scales in order to guarantee and secure supply of electricity. An ideal energy storage technology would have a high power rating, a large storage capacity, high efficiency, low costs and no geographic constraints. The use of air as energy carrier has been studied since the 20th century with the first compressed air energy storage (CAES) systems. This technology is still recognized to have potential but it is geographically constrained where suitable geological tanks are available unless compressed air is stored in pressurized tanks with significant costs. Liquid Air Energy Storage (LAES) represents an interesting solution due to his relatively large volumetric energy density and ease of storage. This paper focuses on power recovery from liquid air, either with or without combustion. Two layouts are modeled with Aspen HYSYS (R) simulation software and compared in terms of roundtrip and fuel efficiencies. (C) 2016 The Authors. Published by Elsevier Ltd.
引用
下载
收藏
页码:693 / 697
页数:5
相关论文
共 50 条
  • [31] Economic analysis of a hybrid energy storage system based on liquid air and compressed air
    Pimm, Andrew J.
    Garvey, Seamus D.
    Kantharaj, Bharath
    JOURNAL OF ENERGY STORAGE, 2015, 4 : 24 - 35
  • [32] Evaluation of the energy potential of an adiabatic compressed air energy storage system based on a novel thermal energy storage system in a post mining shaft
    Bartela, Lukasz
    Ochmann, Jakub
    Waniczek, Sebastian
    Lutynski, Marcin
    Smolnik, Grzegorz
    Rulik, Sebastian
    JOURNAL OF ENERGY STORAGE, 2022, 54
  • [33] The thermodynamic effect of thermal energy storage on compressed air energy storage system
    Zhang, Yuan
    Yang, Ke
    Li, Xuemei
    Xu, Jianzhong
    RENEWABLE ENERGY, 2013, 50 : 227 - 235
  • [34] Experimental study of compressed air energy storage system with thermal energy storage
    Wang, Sixian
    Zhang, Xuelin
    Yang, Luwei
    Zhou, Yuan
    Wang, Junjie
    ENERGY, 2016, 103 : 182 - 191
  • [35] Design of thermal energy storage unit for Compressed Air Energy Storage system
    Szybiak, Maciej
    Jaworski, Maciej
    17TH INTERNATIONAL CONFERENCE HEAT TRANSFER AND RENEWABLE SOURCES OF ENERGY (HTRSE-2018), 2018, 70
  • [36] Exploring thermodynamic potential of multiple phase change thermal energy storage for adiabatic compressed air energy storage system
    Li, Ruixiong
    Zhang, Yan
    Chen, Hao
    Zhang, Haoran
    Yang, Zhenshuai
    Yao, Erren
    Wang, Huanran
    JOURNAL OF ENERGY STORAGE, 2021, 33
  • [37] Energy, exergy, and economic analyses of an innovative energy storage system; liquid air energy storage (LAES) combined with high-temperature thermal energy storage (HTES)
    Nabat, Mohammad Hossein
    Zeynalian, Mirhadi
    Razmi, Amir Reza
    Arabkoohsar, Ahmad
    Soltani, M.
    ENERGY CONVERSION AND MANAGEMENT, 2020, 226
  • [38] Thermodynamic analysis of liquid air energy storage system integrating LNG cold energy
    Zhang, Chengbin
    Li, Deming
    Mao, Changjun
    Liu, Haiyang
    Chen, Yongping
    ENERGY, 2024, 299
  • [39] Dynamic characteristics analysis for energy release process of liquid air energy storage system
    Cui, Shuangshuang
    He, Qing
    Shi, Xingping
    Liu, Yixue
    Du, Dongmei
    RENEWABLE ENERGY, 2021, 180 : 744 - 755
  • [40] Liquid air energy storage system (study of air liquefaction characteristics using a concrete-type cool storage unit)
    Kitou, Kazuaki
    Fujii, Tadashi
    Shiina, Koji
    Chino, Kooichi
    Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 2002, 68 (674): : 2870 - 2876