On the optimal parameter of a self-concordant barrier over a symmetric cone

被引:8
|
作者
Cardoso, DM [1 ]
Vieira, LA
机构
[1] Univ Aveiro, Dept Matemat, P-3810193 Aveiro, Portugal
[2] Univ Porto, Dept Civil Engn, P-4200465 Oporto, Portugal
关键词
symmetric cones; self-concordant barriers; optimal parameters;
D O I
10.1016/j.ejor.2004.11.027
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
The properties of the barrier F(x) = -log(det(x)), defined over the cone of squares of a Euclidean Jordan algebra, are analyzed using pure algebraic techniques. Furthermore, relating the Caratheodory number of a symmetric cone with the rank of an underlying Euclidean Jordan algebra, conclusions about the optimal parameter of F are suitably obtained. Namely, in a more direct and suitable way than the one presented by Guler and Tuncel (Characterization of the barrier parameter of homogeneous convex cones, Mathematical Programming 81 (1998) 55-76), it is proved that the Caratheodory number of the cone of squares of a Euclidean Jordan algebra is equal to the rank of the algebra. Then, taking into account the result obtained in the same paper where it is stated that the Caratheodory number of a symmetric cone Q is the optimal parameter of a self-concordant barrier defined over Q, we may conclude that the rank of every underlying Euclidean Jordan algebra is also the self-concordant barrier optimal parameter. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:1148 / 1157
页数:10
相关论文
共 50 条
  • [1] New self-concordant barrier for the hypercube
    Quiroz, E. A. Papa
    Oliveira, P. R.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2007, 135 (03) : 475 - 490
  • [2] A Note on a Self-concordant Barrier Function
    Jin, Zhengjing
    Bai, Yanqin
    Zhang, Lipu
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON APPLIED MATRIX THEORY, 2009, : 279 - 282
  • [3] New Self-Concordant Barrier for the Hypercube
    E. A. Papa Quiroz
    P. R. Oliveira
    Journal of Optimization Theory and Applications, 2007, 135 : 475 - 490
  • [4] A Local Self-concordant Finite Barrier Function
    Jin, Zhengjing
    Bai, Yanqin
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPPLICATIONS, VOL 1, 2009, : 355 - 359
  • [5] On the complexity of the primal self-concordant barrier method
    Brinkhuis, J
    OPERATIONS RESEARCH LETTERS, 2003, 31 (06) : 442 - 444
  • [6] OPTIMAL SELF-CONCORDANT BARRIERS FOR QUANTUM RELATIVE ENTROPIES
    Fawzi, Hamza
    Saunderson, James
    SIAM JOURNAL ON OPTIMIZATION, 2023, 33 (04) : 2858 - 2884
  • [7] On self-concordant barrier functions for conic hulls and fractional programming
    Freund, RW
    Jarre, F
    Schaible, S
    MATHEMATICAL PROGRAMMING, 1996, 74 (03) : 237 - 246
  • [8] On the boundary behaviour of the Riemannian structure of a self-concordant barrier function
    Duistermaat, JJ
    ASYMPTOTIC ANALYSIS, 2001, 27 (01) : 9 - 46
  • [9] No Self-Concordant Barrier Interior Point Method Is Strongly Polynomial
    Allamigeon, Xavier
    Gaubert, Stephane
    Vandame, Nicolas
    PROCEEDINGS OF THE 54TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '22), 2022, : 515 - 528
  • [10] Recursive Construction of Optimal Self-Concordant Barriers for Homogeneous Cones
    O. Shevchenko
    Journal of Optimization Theory and Applications, 2009, 140