On the boundary behaviour of the Riemannian structure of a self-concordant barrier function

被引:0
|
作者
Duistermaat, JJ [1 ]
机构
[1] Univ Utrecht, Dept Math, NL-3508 TA Utrecht, Netherlands
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:9 / 46
页数:38
相关论文
共 50 条
  • [1] A Note on a Self-concordant Barrier Function
    Jin, Zhengjing
    Bai, Yanqin
    Zhang, Lipu
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON APPLIED MATRIX THEORY, 2009, : 279 - 282
  • [2] A Local Self-concordant Finite Barrier Function
    Jin, Zhengjing
    Bai, Yanqin
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPPLICATIONS, VOL 1, 2009, : 355 - 359
  • [3] New self-concordant barrier for the hypercube
    Quiroz, E. A. Papa
    Oliveira, P. R.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2007, 135 (03) : 475 - 490
  • [4] A class of self-concordant functions on Riemannian manifolds
    Bercu, Gabriel
    Postolache, Mihai
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2009, 14 (02): : 13 - 20
  • [5] New Self-Concordant Barrier for the Hypercube
    E. A. Papa Quiroz
    P. R. Oliveira
    Journal of Optimization Theory and Applications, 2007, 135 : 475 - 490
  • [6] On the complexity of the primal self-concordant barrier method
    Brinkhuis, J
    OPERATIONS RESEARCH LETTERS, 2003, 31 (06) : 442 - 444
  • [7] On self-concordant barrier functions for conic hulls and fractional programming
    Freund, RW
    Jarre, F
    Schaible, S
    MATHEMATICAL PROGRAMMING, 1996, 74 (03) : 237 - 246
  • [8] On the optimal parameter of a self-concordant barrier over a symmetric cone
    Cardoso, DM
    Vieira, LA
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2006, 169 (03) : 1148 - 1157
  • [9] No Self-Concordant Barrier Interior Point Method Is Strongly Polynomial
    Allamigeon, Xavier
    Gaubert, Stephane
    Vandame, Nicolas
    PROCEEDINGS OF THE 54TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '22), 2022, : 515 - 528
  • [10] On the Riemannian Geometry Defined by Self-Concordant Barriers and Interior-Point Methods
    Foundations of Computational Mathematics, 2002, 2 : 333 - 361