Optimal rates of convergence for estimates of the extreme value index

被引:0
|
作者
Drees, H [1 ]
机构
[1] Univ Cologne, Inst Math, D-50931 Cologne, Germany
来源
ANNALS OF STATISTICS | 1998年 / 26卷 / 01期
关键词
extreme value index; rate of convergence; optimality; robustness; Hill estimator; moment estimator; Pickands estimator;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Hall and Welsh established the best attainable rate of convergence for estimates of a positive extreme value index gamma under a certain second order condition implying that the distribution function of the maximum of n random variables converges at an algebraic rate to the pertaining extreme value distribution. As a first generalization, we obtain a surprisingly sharp bound on the estimation error if gamma is still assumed to be positive, but the rate of convergence of the maximum may be nonalgebraic. This result allows a more accurate evaluation of the asymptotic performance of an estimator for gamma than the Hall and Welsh theorem. For example, it is proved that the Hill and the Pickands estimators achieve the optimal rate, but only the Hill estimator attains the sharp bound. Finally, an analogous result is derived for a general, not necessarily positive, extreme value index. In this situation it turns out that location invariant estimators show the best performance.
引用
收藏
页码:434 / 448
页数:15
相关论文
共 50 条
  • [41] LINEAR ESTIMATES OF PARAMETERS IN EXTREME VALUE DISTRIBUTION
    DOWNTON, F
    TECHNOMETRICS, 1966, 8 (01) : 3 - &
  • [42] Extreme Rate Optimal Index Code
    Neelakandan, Rajesh
    Kaliyaperumal, Ganesan
    IEEE ACCESS, 2024, 12 : 34592 - 34605
  • [43] Competitive estimation of the extreme value index
    Gomes, M. Ivette
    Henriques-Rodrigues, Ligia
    STATISTICS & PROBABILITY LETTERS, 2016, 117 : 128 - 135
  • [44] Iterative estimation of the extreme value index
    Müller, S
    Hüsler, J
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2005, 7 (02) : 139 - 148
  • [45] An estimator for the extreme-value index
    Draisma, G
    deHaan, L
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1996, 25 (04) : 685 - 694
  • [46] Iterative Estimation of the Extreme Value Index
    Samuel Müller
    Jürg Hüsler
    Methodology and Computing in Applied Probability, 2005, 7 : 139 - 148
  • [47] Distributed inference for the extreme value index
    Chen, Liujun
    Li, Deyuan
    Zhou, Chen
    BIOMETRIKA, 2022, 109 (01) : 257 - 264
  • [48] Rates of convergence in certain limit theorem for extreme values
    Mladenovic, Pavle
    Vukmirovic, Jovan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 363 (01) : 287 - 295
  • [49] Rates of convergence of extreme for STSD under power normalization
    Chen, Shouquan
    Feng, Bo
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2014, 43 (04) : 609 - 619
  • [50] Rates of convergence of extreme for STSD under power normalization?
    Shouquan Chen
    Bo Feng
    Journal of the Korean Statistical Society, 2014, 43 : 609 - 619