Bifurcations in Hamiltonian systems - Computing singularities by Grobner bases - Preface

被引:0
|
作者
Broer, H
Hoveijn, I
Lunter, G
Vegter, G
机构
[1] Univ Groningen, Dept Math & Comp Sci, NL-9700 AV Groningen, Netherlands
[2] Univ Oxford, Dept Stat, Oxford OX1 3TG, England
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:V / +
页数:167
相关论文
共 50 条
  • [41] Computing Self-intersection Loci of Parametrized Surfaces Using Regular Systems and Grobner Bases
    Huang, Yanli
    Wang, Dongming
    11TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2009), 2009, : 28 - 36
  • [42] Certifying properties of an efficient functional program for computing Grobner bases
    Jorge, J. Santiago
    Gulias, Victor M.
    Freire, Jose L.
    JOURNAL OF SYMBOLIC COMPUTATION, 2009, 44 (05) : 571 - 582
  • [43] A survey on signature-based algorithms for computing Grobner bases
    Eder, Christian
    Faugere, Jean-Charles
    JOURNAL OF SYMBOLIC COMPUTATION, 2017, 80 : 719 - 784
  • [44] Compact representation of polynomials for algorithms for computing Grobner and involutive bases
    Yanovich, D. A.
    PROGRAMMING AND COMPUTER SOFTWARE, 2015, 41 (02) : 126 - 130
  • [45] Term Cancellations in Computing Floating-Point Grobner Bases
    Sasaki, Tateaki
    Kako, Fuji
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, 2010, 6244 : 220 - +
  • [46] On the use of Grobner bases for computing the structure of finite abelian groups
    Borges-Quintana, M
    Borges-Trenard, MA
    Martínez-Moro, E
    COMPUTER ALGEBRA IN SCIENFIFIC COMPUTING, PROCEEDINGS, 2005, 3718 : 52 - 64
  • [47] A new signature-based algorithms for computing Grobner bases
    Zheng Licui
    Liu Jinwang
    Liu Weijun
    Li Dongmei
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2015, 28 (01) : 210 - 221
  • [48] On Computing Grobner Bases in Rings of Differential Operators with Coefficients in a Ring
    Zhou, Meng
    Winkler, Franz
    MATHEMATICS IN COMPUTER SCIENCE, 2007, 1 (02) : 211 - 223
  • [49] Grobner bases for finite-temperature quantum computing and their complexity
    Crompton, P. R.
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (11)
  • [50] Computing Grobner bases for vanishing ideals of finite sets of points
    Farr, JB
    Gao, SH
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, PROCEEDINGS, 2006, 3857 : 118 - 127