A Word Embedding Model For Topic Recommendation

被引:0
|
作者
Kannan, Megala S. [1 ]
Mahalakshmi, G. S. [1 ]
Smitha, E. S. [2 ]
Sendhilkumar, S. [2 ]
机构
[1] Anna Univ, Coll Engn Guindy, Dept Comp Sci & Engn, Chennai 600025, India
[2] Anna Univ, Coll Engn Guindy, Dept Informat Sci & Technol, Chennai 600025, India
关键词
context analysis; hash-tag; LDA; tweet; topic modeling; word2vec;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The proposed work aims to recommend relevant hash-tags from social media posts and blog posts related to food, recipes and other popular domains using topic word-embeddings. These hash-tags can be used in turn to give food item/recipe as the user requires. For topic modeling a machine learning approach called LDA(Latent Dirichlet Allocation) is used. The method treats the social media posts as a corpus of words and applies a topic modeling to generate the relevant hash-tags. The hash-tags recommended are cross validated with a word embedding model developed from the Wikipedia corpus to check the accuracy of the recommendation system. This algorithm is further tested on posts that do not contain hash-tags to recommend new relevant hash-tags for the same.
引用
收藏
页码:1307 / 1311
页数:5
相关论文
共 50 条
  • [21] Distilled Wasserstein Learning for Word Embedding and Topic Modeling
    Xu, Hongteng
    Wang, Wenlin
    Liu, Wei
    Carin, Lawrence
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [22] Word Embedding-Based Topic Similarity Measures
    Terragni, Silvia
    Fersini, Elisabetta
    Messina, Enza
    NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS (NLDB 2021), 2021, 12801 : 33 - 45
  • [23] Query Recommendation Using Topic Modeling and Word Embeddings
    Duan, Jianyong
    Song, Yadi
    Zhang, Yongmei
    Wu, Mingli
    Wang, Hao
    2018 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND PATTERN RECOGNITION (AIPR 2018), 2018, : 86 - 92
  • [24] GLTM: A Global and Local Word Embedding-Based Topic Model for Short Texts
    Liang, Wenxin
    Feng, Ran
    Liu, Xinyue
    Li, Yuangang
    Zhang, Xianchao
    IEEE ACCESS, 2018, 6 : 43612 - 43621
  • [25] News recommendation based on time factor and word embedding
    Gu Yiran
    Zhou Peng
    Yang Haigen
    The Journal of China Universities of Posts and Telecommunications, 2021, 28 (05) : 82 - 90
  • [26] News recommendation based on time factor and word embedding
    Yiran G.
    Peng Z.
    Haigen Y.
    Journal of China Universities of Posts and Telecommunications, 2021, 28 (05): : 82 - 90
  • [27] Semantic Concept Spaces: Guided Topic Model Refinement using Word-Embedding Projections
    El-Assady, Mennatallah
    Kehlbeck, Rebecca
    Collins, Christopher
    Keim, Daniel
    Deussen, Oliver
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (01) : 1001 - 1011
  • [28] News Recommendation With Word-Related Joint Topic Prediction
    Pu, Xiuze
    Zhang, Jincheng
    Chen, Xi
    Qian, Yingjing
    Zhang, Renmin
    IEEE ACCESS, 2024, 12 : 72566 - 72577
  • [29] Incorporating Word Embedding into Cross-lingual Topic Modeling
    Chang, Chia-Hsuan
    Hwang, San-Yih
    Xui, Tou-Hsiang
    2018 IEEE INTERNATIONAL CONGRESS ON BIG DATA (IEEE BIGDATA CONGRESS), 2018, : 17 - 24
  • [30] Feature Expansion using Word Embedding for Tweet Topic Classification
    Setiawan, Erwin B.
    Widyantoro, Dwi H.
    Surendro, Kridanto
    2016 10TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATION SYSTEMS SERVICES AND APPLICATIONS (TSSA), 2016,