Compressive Gaussian Mixture Estimation

被引:0
|
作者
Bourrier, Anthony [1 ,2 ]
Gribonval, Remi [1 ]
Perez, Patrick [2 ]
机构
[1] Inria Rennes Bretagne Atlantique, Rennes, France
[2] Technicolor, Cesson Sevigne, France
关键词
D O I
10.1007/978-3-319-16042-9_8
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
When performing a learning task on voluminous data, memory and computational time can become prohibitive. In this chapter, we propose a framework aimed at estimating the parameters of a density mixture on training data in a compressive manner by computing a low-dimensional sketch of the data. The sketch represents empirical moments of the underlying probability distribution. Instantiating the framework on the case where the densities are isotropic Gaussians, we derive a reconstruction algorithm by analogy with compressed sensing. We experimentally show that it is possible to precisely estimate the mixture parameters provided that the sketch is large enough, while consuming less memory in the case of numerous data. The considered framework also provides a privacy-preserving data analysis tool, since the sketch does not disclose information about individual datum it is based on.
引用
收藏
页码:239 / 258
页数:20
相关论文
共 50 条
  • [21] Gaussian Mixture Estimation from Weighted Samples
    Frisch, Daniel
    Hanebeck, Uwe D.
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS (MFI), 2021,
  • [22] Bayesian estimation of the Gaussian mixture GARCH model
    Concepcion Ausin, Maria
    Galeano, Pedro
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (05) : 2636 - 2652
  • [24] ADAPTED STATISTICAL COMPRESSIVE SENSING: LEARNING TO SENSE GAUSSIAN MIXTURE MODELS
    Duarte-Carvajalino, Julio M.
    Yu, Guoshen
    Carin, Lawrence
    Sapiro, Guillermo
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 3653 - 3656
  • [25] Temporal Compressive Video Reconstruction Using Gaussian Scale Mixture Model
    He, Xiao-hai
    Wang, Mao-jiao
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER NETWORKS AND COMMUNICATION TECHNOLOGY (CNCT 2016), 2016, 54 : 722 - 727
  • [26] Modal Trajectory Estimation Using Maximum Gaussian Mixture
    Monin, Andre
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (03) : 763 - 768
  • [27] Multiresolution Gaussian mixture models for visual motion estimation
    Wilson, R
    Calway, A
    [J]. 2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL II, PROCEEDINGS, 2001, : 921 - 924
  • [28] Estimation of critical points in the mixture inverse Gaussian model
    Ramesh C. Gupta
    Olcay Akman
    [J]. Statistical Papers, 1997, 38 : 445 - 452
  • [29] Fast estimation of Gaussian mixture models for image segmentation
    Nicola Greggio
    Alexandre Bernardino
    Cecilia Laschi
    Paolo Dario
    José Santos-Victor
    [J]. Machine Vision and Applications, 2012, 23 : 773 - 789
  • [30] Estimation of critical points in the mixture inverse Gaussian model
    Gupta, RC
    Akman, O
    [J]. STATISTICAL PAPERS, 1997, 38 (04) : 445 - 452