Compressive Gaussian Mixture Estimation

被引:0
|
作者
Bourrier, Anthony [1 ,2 ]
Gribonval, Remi [1 ]
Perez, Patrick [2 ]
机构
[1] Inria Rennes Bretagne Atlantique, Rennes, France
[2] Technicolor, Cesson Sevigne, France
关键词
D O I
10.1007/978-3-319-16042-9_8
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
When performing a learning task on voluminous data, memory and computational time can become prohibitive. In this chapter, we propose a framework aimed at estimating the parameters of a density mixture on training data in a compressive manner by computing a low-dimensional sketch of the data. The sketch represents empirical moments of the underlying probability distribution. Instantiating the framework on the case where the densities are isotropic Gaussians, we derive a reconstruction algorithm by analogy with compressed sensing. We experimentally show that it is possible to precisely estimate the mixture parameters provided that the sketch is large enough, while consuming less memory in the case of numerous data. The considered framework also provides a privacy-preserving data analysis tool, since the sketch does not disclose information about individual datum it is based on.
引用
收藏
页码:239 / 258
页数:20
相关论文
共 50 条
  • [1] COMPRESSIVE GAUSSIAN MIXTURE ESTIMATION
    Bourrier, Anthony
    Gribonval, Remi
    Perez, Patrick
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 6024 - 6028
  • [2] STATISTICAL COMPRESSIVE SENSING OF GAUSSIAN MIXTURE MODELS
    Yu, Guoshen
    Sapiro, Guillermo
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 3728 - 3731
  • [3] GAUSSIAN MIXTURE MODEL FOR VIDEO COMPRESSIVE SENSING
    Yang, Jianbo
    Yuan, Xin
    Liao, Xuejun
    Llull, Patrick
    Sapiro, Guillermo
    Brady, David J.
    Carin, Lawrence
    [J]. 2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 19 - 23
  • [4] EFFICIENT RECOVERY OF PRINCIPAL COMPONENTS FROM COMPRESSIVE MEASUREMENTS WITH APPLICATION TO GAUSSIAN MIXTURE MODEL ESTIMATION
    Anaraki, Farhad Pourkamali
    Hughes, Shannon M.
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [5] Compressive Estimation of a Spatial Gaussian Process
    Malmirchegini, Mehrzad
    [J]. 2013 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM 2013), 2013, : 1610 - 1615
  • [6] Video Compressive Sensing Using Gaussian Mixture Models
    Yang, Jianbo
    Yuan, Xin
    Liao, Xuejun
    Llull, Patrick
    Brady, David J.
    Sapiro, Guillermo
    Carin, Lawrence
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (11) : 4863 - 4878
  • [7] Convolutional Gaussian Mixture Models with Application to Compressive Sensing
    Wang, Ren
    Liao, Xuejun
    Guo, Jingbo
    [J]. 2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 298 - 302
  • [8] STATISTICAL ESTIMATION OF A MIXTURE OF GAUSSIAN DISTRIBUTIONS
    RUDZKIS, R
    RADAVICIUS, M
    [J]. ACTA APPLICANDAE MATHEMATICAE, 1995, 38 (01) : 37 - 54
  • [9] Statistical compressive sensing based on convolutional Gaussian mixture model
    Wang Ren
    Guo Jing-Bo
    Hui Jun-Peng
    Wang Ze
    Liu Hong-Jun
    Xu Yuan-Nan
    Liu Yun-Fo
    [J]. ACTA PHYSICA SINICA, 2019, 68 (18)
  • [10] Discriminative mixture weight estimation for large Gaussian mixture models
    Beaufays, F
    Weintraub, M
    Konig, Y
    [J]. ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 337 - 340