Weyl Equation and BPS Monopoles

被引:0
|
作者
Doikou, Anastasia [1 ,2 ]
Ioannidou, Theodora [1 ,2 ]
机构
[1] Aristotle Univ Thessaloniki, Fac Engn, Dept Math Phys & Computat Sci, GR-54124 Thessaloniki, Greece
[2] Univ Patras, Dept Engn Sci, GR-26500 Patras, Greece
关键词
Weyl equation; BPS monopole; non-commutative SU(n+1) BPS monopoles; ADHM; ADHMN; SYMMETRY;
D O I
10.1063/1.3636821
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We apply the ADHMN construction to obtain the SU(n + 1) (for generic values of n) spherically symmetric BPS monopoles with minimal symmetry breaking. In particular, the problem simplifies by solving the Weyl equation, leading to a set of coupled equations, whose solutions are expressed in terms of the Whittaker functions. Next, this construction is generalized for non-commutative SU(n + 1) BPS monopoles, where the corresponding solutions are given in terms of the Heun B functions.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Monopoles, noncommutative gauge theories in the BPS limit and some simple gauge groups
    Perez Martín, Carmelo
    Tamarit, Carlos
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (01):
  • [42] Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics
    Hanany, A
    Witten, E
    NUCLEAR PHYSICS B, 1997, 492 (1-2) : 152 - 190
  • [43] Gravitating BPS monopoles in all d=4p spacetime dimensions
    Breitenlohner, Peter
    Tchrakian, D. H.
    CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (14)
  • [44] Hydrodynamic form of the Weyl Equation
    Acta Phys Pol Ser B Part Phys Field Theor Nucl Phys Relative, 7 (1201):
  • [45] HYDRODYNAMIC FORM OF THE WEYL EQUATION
    BIALYNICKIBIRULA, I
    ACTA PHYSICA POLONICA B, 1995, 26 (07): : 1201 - 1208
  • [46] DIRACS EQUATION IN A WEYL SPACE
    NOVELLO, M
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1969, 64 (04): : 954 - +
  • [47] SU(N) BPS monopoles in M2 x S2
    Canfora, Fabrizio
    Tallarita, Gianni
    PHYSICAL REVIEW D, 2015, 91 (08):
  • [48] Axisymmetric non-abelian BPS monopoles from G2 metrics
    Hartnoll, SA
    NUCLEAR PHYSICS B, 2002, 631 (1-2) : 325 - 341
  • [49] From Soft Dirac Monopoles to the Dirac Equation
    Faber, Manfried
    UNIVERSE, 2022, 8 (08)
  • [50] Liouville equation in 1/8 BPS geometries
    Mitsuka, Yoshihiro
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (09):