Turbulent Rayleigh-Benard convection in spherical shells

被引:54
|
作者
Gastine, Thomas [1 ]
Wicht, Johannes [1 ]
Aurnou, Jonathan M. [2 ]
机构
[1] Max Planck Inst Sonnensyst Forsch, D-37077 Gottingen, Germany
[2] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Benard convection; boundary layers; geophysical and geological flows; 3-DIMENSIONAL THERMAL-CONVECTION; VISCOUS BOUNDARY-LAYER; HEAT-TRANSFER; NATURAL-CONVECTION; ASPECT RATIO; MANTLE CONVECTION; NUSSELT NUMBER; ZONAL FLOW; SHEET-LIKE; MODELS;
D O I
10.1017/jfm.2015.401
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We simulate numerically Boussinesq convection in non-rotating spherical shells for a fluid with a Prandtl number of unity and for Rayleigh numbers up to 10(9). In this geometry, curvature and radial variations of the gravitational acceleration yield asymmetric boundary layers. A systematic parameter study for various radius ratios (from eta = r(i)/r(o) = 0.2 to eta = 0.95) and gravity profiles allows us to explore the dependence of the asymmetry on these parameters. We find that the average plume spacing is comparable between the spherical inner and outer bounding surfaces. An estimate of the average plume separation allows us to accurately predict the boundary layer asymmetry for the various spherical shell configurations explored here. The mean temperature and horizontal velocity profiles are in good agreement with classical Prandtl-Blasius laminar boundary layer profiles, provided the boundary layers are analysed in a dynamical frame that fluctuates with the local and instantaneous boundary layer thicknesses. The scaling properties of the Nusselt and Reynolds numbers are investigated by separating the bulk and boundary layer contributions to the thermal and viscous dissipation rates using numerical models with eta = 0.6 and with gravity proportional to 1/r(2). We show that our spherical models are consistent with the predictions of Grossmann & Lohse's (J. Fluid Mech., vol. 407, 2000, pp. 27-56) theory and that Nu(Ra) and Re(Ra) scalings are in good agreement with plane layer results.
引用
收藏
页码:721 / 764
页数:44
相关论文
共 50 条
  • [1] Asymmetries in Turbulent Rayleigh-Benard Convection
    du Puits, Ronald
    Resagk, Christian
    Thess, Andre
    [J]. PROGRESS IN TURBULENCE III, 2010, 131 : 179 - 182
  • [2] The turbulent regimes of Rayleigh-Benard convection
    Chavanne, X
    Chilla, F
    Castaing, B
    Chabaud, B
    Hebral, B
    Roche, P
    [J]. ADVANCES IN TURBULENCE VII, 1998, 46 : 461 - 464
  • [3] Turbulent superstructures in Rayleigh-Benard convection
    Pandey, Ambrish
    Scheel, Janet D.
    Schumacher, Joerg
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [4] Turbulent Rotating Rayleigh-Benard Convection
    Ecke, Robert E.
    Shishkina, Olga
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, 2023, 55 : 603 - 638
  • [5] Experimental Studies of Turbulent Rayleigh-Benard Convection
    Xia, Ke-Qing
    [J]. ADVANCES IN TURBULENCE XII - PROCEEDINGS OF THE 12TH EUROMECH EUROPEAN TURBULENCE CONFERENCE, 2009, 132 : 471 - 478
  • [6] Transitions in turbulent rotating Rayleigh-Benard convection
    Schmitz, S.
    Tilgner, A.
    [J]. GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2010, 104 (5-6): : 481 - 489
  • [7] New perspectives in turbulent Rayleigh-Benard convection
    Chilla, F.
    Schumacher, J.
    [J]. EUROPEAN PHYSICAL JOURNAL E, 2012, 35 (07):
  • [8] Rapidly rotating turbulent Rayleigh-Benard convection
    Julien, K
    Legg, S
    McWilliams, J
    Werne, J
    [J]. JOURNAL OF FLUID MECHANICS, 1996, 322 : 243 - 273
  • [9] Turbulent transition in Rayleigh-Benard convection with fluorocarbon(a)
    Methivier, Lucas
    Braun, Romane
    Chilla, Francesca
    Salort, Julien
    [J]. EPL, 2021, 136 (01)
  • [10] Wind reversals in turbulent Rayleigh-Benard convection
    Araujo, FF
    Grossmann, S
    Lohse, D
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (08)