A Markov random field approach for modeling spatio-temporal evolution of microstructures

被引:26
|
作者
Acar, Pinar [1 ]
Sundararaghavan, Veera [1 ]
机构
[1] Univ Michigan, Aerosp Engn, Ann Arbor, MI 48109 USA
关键词
microstructure; reconstruction; probability; markov random fields; TEXTURE SYNTHESIS; RECONSTRUCTION;
D O I
10.1088/0965-0393/24/7/075005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The following problem is addressed: 'Can one synthesize microstructure evolution over a large area given experimental movies measured over smaller regions?' Our input is a movie of microstructure evolution over a small sample window. A Markov random field (MRF) algorithm is developed that uses this data to estimate the evolution of microstructure over a larger region. Unlike the standard microstructure reconstruction problem based on stationary images, the present algorithm is also able to reconstruct time-evolving phenomena such as grain growth. Such an algorithm would decrease the cost of full-scale microstructure measurements by coupling mathematical estimation with targeted small-scale spatiotemporal measurements. The grain size, shape and orientation distribution statistics of synthesized polycrystalline microstructures at different times are compared with the original movie to verify the method.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Modelling spatio-temporal random fields
    Schmiegel, J
    Barndorff-Nielsen, OE
    Eggers, HC
    [J]. SOUTH AFRICAN JOURNAL OF SCIENCE, 2005, 101 (11-12) : 512 - 512
  • [32] Modeling spatio-temporal nonlocality in mean-field dynamos
    Rheinhardt, M.
    Brandenburg, A.
    [J]. ASTRONOMISCHE NACHRICHTEN, 2012, 333 (01) : 71 - 77
  • [33] SPATIO-TEMPORAL VISUAL RECEPTIVE-FIELDS AS REVEALED BY SPATIO-TEMPORAL RANDOM NOISE
    HIDA, E
    NAKA, K
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG C-A JOURNAL OF BIOSCIENCES, 1982, 37 (10): : 1048 - 1049
  • [34] Modeling topic evolution in public opinion events: an unsupervised spatio-temporal graph attention approach
    Wang, Xi
    Kong, Mingming
    Chen, Jiexin
    Wang, Xianjun
    Pei, Zheng
    [J]. APPLIED INTELLIGENCE, 2024, 54 (20) : 9706 - 9722
  • [35] The nonparametric estimation of long memory spatio-temporal random field models
    WANG LiHong
    [J]. Science China Mathematics, 2015, 58 (05) : 1115 - 1128
  • [36] The nonparametric estimation of long memory spatio-temporal random field models
    LiHong Wang
    [J]. Science China Mathematics, 2015, 58 : 1115 - 1128
  • [37] The nonparametric estimation of long memory spatio-temporal random field models
    Wang LiHong
    [J]. SCIENCE CHINA-MATHEMATICS, 2015, 58 (05) : 1115 - 1128
  • [38] High-dimensional modeling of spatial and spatio-temporal conditional extremes using INLA and Gaussian Markov random fields
    Emma S. Simpson
    Thomas Opitz
    Jennifer L. Wadsworth
    [J]. Extremes, 2023, 26 : 669 - 713
  • [39] A Spatio-Temporal Linked Data Representation for Modeling Spatio-Temporal Dialect Data
    Scholz, Johannes
    Hrastnig, Emanual
    Wandl-Vogt, Eveline
    [J]. PROCEEDINGS OF WORKSHOPS AND POSTERS AT THE 13TH INTERNATIONAL CONFERENCE ON SPATIAL INFORMATION THEORY (COSIT 2017), 2018, : 275 - 282
  • [40] High-dimensional modeling of spatial and spatio-temporal conditional extremes using INLA and Gaussian Markov random fields
    Simpson, Emma S.
    Opitz, Thomas
    Wadsworth, Jennifer L.
    [J]. EXTREMES, 2023, 26 (04) : 669 - 713