A Markov random field approach for modeling spatio-temporal evolution of microstructures

被引:26
|
作者
Acar, Pinar [1 ]
Sundararaghavan, Veera [1 ]
机构
[1] Univ Michigan, Aerosp Engn, Ann Arbor, MI 48109 USA
关键词
microstructure; reconstruction; probability; markov random fields; TEXTURE SYNTHESIS; RECONSTRUCTION;
D O I
10.1088/0965-0393/24/7/075005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The following problem is addressed: 'Can one synthesize microstructure evolution over a large area given experimental movies measured over smaller regions?' Our input is a movie of microstructure evolution over a small sample window. A Markov random field (MRF) algorithm is developed that uses this data to estimate the evolution of microstructure over a larger region. Unlike the standard microstructure reconstruction problem based on stationary images, the present algorithm is also able to reconstruct time-evolving phenomena such as grain growth. Such an algorithm would decrease the cost of full-scale microstructure measurements by coupling mathematical estimation with targeted small-scale spatiotemporal measurements. The grain size, shape and orientation distribution statistics of synthesized polycrystalline microstructures at different times are compared with the original movie to verify the method.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Segmentations of spatio-temporal images by spatio-temporal Markov random field model
    Kamijo, S
    Ikeuchi, K
    Sakauchi, M
    [J]. ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, 2001, 2134 : 298 - 313
  • [2] A Markov random field approach to spatio-temporal contextual image classification
    Melgani, F
    Serpico, SB
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (11): : 2478 - 2487
  • [3] Modeling spatio-temporal field evolution
    Borstnik Bracic, A.
    Grabec, I.
    Govekar, E.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2009, 69 (04): : 529 - 538
  • [4] Modeling spatio-temporal field evolution
    A. Borštnik Bračič
    I. Grabec
    E. Govekar
    [J]. The European Physical Journal B, 2009, 69 : 529 - 538
  • [5] Spatio-temporal Markov random field for video denoising
    Chen, Jia
    Tang, Chi-Keung
    [J]. 2007 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-8, 2007, : 2232 - +
  • [6] Illumination invariant segmentation of spatio-temporal images by spatio-temporal Markov random field model
    Kamijo, S
    Ikeuchi, K
    Sakauchi, M
    [J]. 16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL II, PROCEEDINGS, 2002, : 617 - 622
  • [7] A Markov random field spatio-temporal analysis of ocean temperature
    Lavine, M
    Lozier, S
    [J]. ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 1999, 6 (03) : 249 - 273
  • [8] A Markov random field spatio-temporal analysis of ocean temperature
    Michael Lavine
    Susan Lozier
    [J]. Environmental and Ecological Statistics, 1999, 6 : 249 - 273
  • [9] Simultaneous tracking of pedestrians and vehicles by the spatio-temporal Markov random field model
    Kamijo, S
    Sakauchi, M
    [J]. 2003 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-5, CONFERENCE PROCEEDINGS, 2003, : 3732 - 3737
  • [10] Occlusion robust tracking utilizing Spatio-Temporal Markov Random Field model
    Kamijo, S
    Matsushita, Y
    Ikeuchi, K
    Sakauchi, M
    [J]. 15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 1, PROCEEDINGS: COMPUTER VISION AND IMAGE ANALYSIS, 2000, : 140 - 144