Development of category-based scoring support vector regression (CBS-SVR) for drought prediction

被引:8
|
作者
Bazrkar, Mohammad Hadi [1 ]
Chu, Xuefeng [1 ]
机构
[1] North Dakota State Univ, Dept Civil & Environm Engn, Dept 2470,POB 6050, Fargo, ND 58108 USA
基金
美国国家科学基金会;
关键词
category-based scoring; drought prediction; support vector classification; support vector regression; tuning hyperparameters; NEURAL-NETWORK; RIVER-BASIN; TIME-SERIES; MACHINE; INDEX; CHALLENGES;
D O I
10.2166/hydro.2022.104
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Using the existing measures for training numerical (non-categorical) prediction models can cause misclassification of droughts. Thus, developing a drought category-based measure is critical. Moreover, the existing fixed drought category thresholds need to be improved. The objective of this research is to develop a category-based scoring support vector regression (CBS-SVR) model based on an improved drought categorization method to overcome misclassification in drought prediction. To derive variable threshold levels for drought categorization, K-means (KM) and Gaussian mixture (GM) clustering are compared with the traditional drought categorization. For drought prediction, CBS-SVR is performed by using the best categorization method. The new drought model was applied to the Red River of the North Basin (RRB) in the USA. In the model training and testing, precipitation, temperature, and actual evapotranspiration were selected as the predictors, and the target variables consisted of multivariate drought indices, as well as bivariate and univariate standardized drought indices. Results indicated that the drought categorization method, variable threshold levels, and the type of drought index were the major factors that influenced the accuracy of drought prediction. The CBS-SVR outperformed the support vector classification and traditional SVR by avoiding overfitting and miscategorization in drought prediction.
引用
收藏
页码:202 / 222
页数:21
相关论文
共 50 条
  • [41] Vector field-based support vector regression for building energy consumption prediction
    Zhong, Hai
    Wang, Jiajun
    Jia, Hongjie
    Mu, Yunfei
    Lv, Shilei
    APPLIED ENERGY, 2019, 242 : 403 - 414
  • [42] Prediction of Building Lighting Energy Consumption Based on Support Vector Regression
    Liu, Dandan
    Chen, Qijun
    2013 9TH ASIAN CONTROL CONFERENCE (ASCC), 2013,
  • [43] A new probabilistic prediction approach based on local ν-support vector regression
    Zhang, Yong-Ming
    Chen, Lie
    Qi, Wei-Gui
    Tang, Hai-Yan
    PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2008, : 728 - 733
  • [44] Battery Life Prediction Based on a Hybrid Support Vector Regression Model
    Chen, Yuan
    Duan, Wenxian
    Ding, Zhenhuan
    Li, Yingli
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [45] The Engine Combustion Phasing Prediction Based on the Support Vector Regression Method
    Wang, Qifan
    Yang, Ruomiao
    Sun, Xiaoxia
    Liu, Zhentao
    Zhang, Yu
    Fu, Jiahong
    Li, Ruijie
    PROCESSES, 2022, 10 (04)
  • [46] PREDICTION OF RESPIRATORY MOTION USING WAVELET BASED SUPPORT VECTOR REGRESSION
    Duerichen, Robert
    Wissel, Tobias
    Schweikard, Achim
    2012 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2012,
  • [47] Prediction of Mechanical Properties of Welded Joints Based on Support Vector Regression
    Gao Shuangsheng
    Tang Xingwei
    Ji Shude
    Yang Zhitao
    2012 INTERNATIONAL WORKSHOP ON INFORMATION AND ELECTRONICS ENGINEERING, 2012, 29 : 1471 - 1475
  • [48] Lifetime Prediction Model of Cylinder Based on Genetic Support Vector Regression
    Bo, Qin
    PROCEEDINGS OF 2010 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY (ICCSIT 2010), VOL 6, 2010, : 502 - 506
  • [49] Water Quality Prediction Based on Grey-support Vector Regression
    Du Jing
    Tao Tao
    MATERIALS SCIENCE AND INFORMATION TECHNOLOGY, PTS 1-8, 2012, 433-440 : 263 - 267
  • [50] Research on water temperature prediction based on improved support vector regression
    Quan Quan
    Zou Hao
    Huang Xifeng
    Lei Jingchun
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (11): : 8501 - 8510