SEMIPARAMETRIC OPTIMAL ESTIMATION WITH NONIGNORABLE NONRESPONSE DATA

被引:10
|
作者
Morikawa, Kosuke [1 ]
Kim, Jae Kwang [2 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Suita, Osaka, Japan
[2] Iowa State Univ, Dept Stat, Ames, IA USA
来源
ANNALS OF STATISTICS | 2021年 / 49卷 / 05期
基金
美国国家科学基金会;
关键词
Estimating functions; identification; incomplete data; not missing at random (NMAR); semiparametric efficient estimation; GOODNESS-OF-FIT; SENSITIVITY ANALYSIS; REGRESSION-MODELS; MISSING DATA; DROP-OUT; IMPUTATION; INDEPENDENCE; INFERENCE;
D O I
10.1214/21-AOS2070
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
When the response mechanism is believed to be not missing at random (NMAR), a valid analysis requires stronger assumptions on the response mechanism than standard statistical methods would otherwise require. Semiparametric estimators have been developed under the parametric model assumptions on the response mechanism. In this paper, a new statistical test is proposed to guarantee model identifiability without using instrumental variable assumption. Furthermore, we develop optimal semiparametric estimation for parameters such as the population mean. Specifically, we propose two semiparametric optimal estimators that do not require any model assumptions other than the response mechanism. Asymptotic properties of the proposed estimators are discussed. An extensive simulation study is presented to compare with some existing methods. We present an application of our method using Korean labor and income panel survey data.
引用
收藏
页码:2991 / 3014
页数:24
相关论文
共 50 条