A shuffle algebra point of view on operator-valued probability theory

被引:1
|
作者
Gilliers, Nicolas [1 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Math Sci, N-7491 Trondheim, Norway
关键词
Non-commutative probability; Duoidal categories; Operads; PROs; Shuffle algebras; S-TRANSFORM; CUMULANTS; TREES;
D O I
10.1016/j.aim.2022.108614
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the shuffle algebra perspective on scalar-valued non-commutative probability theory to the operator-valued case. Given an operator-valued probability space with an algebra B acting on it (on the left and on the right), we associate operators in the operad of multilinear maps on B to the operator-valued distribution and free cumulants of a random variable. These operators define a representation of a PRO of non-crossing partitions. Using concepts from higher category theory, specifically 2-monoidal categories, we define a notion of unshuffle Hopf algebra on an underlying PRO. We introduce a PRO of words insertions and show that both the latter and the PRO of non-crossing partitions are unshuffle Hopf algebras. The two relate by mean of a map of unshuffle bialgebra (in a 2-monoidal sense) which we call the splitting map. Ultimately, we obtain a left half-shuffle fixed point equation corresponding to free moment-cumulant relations in a shuffle algebra of bicollection homomorphisms on the PRO of words insertions. Right half-shuffle and shuffle laws are interpreted in the framework of boolean and monotone non -commutative probability theory, respectively.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:44
相关论文
共 50 条
  • [21] On spectral theory for Schrodinger operators with operator-valued potentials
    Gesztesy, Fritz
    Weikard, Rudi
    Zinchenko, Maxim
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (07) : 1784 - 1827
  • [22] THE UNIVERSAL MULTIPLICITY THEORY FOR ANALYTIC OPERATOR-VALUED FUNCTIONS
    ARASON, J
    MAGNUS, R
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1995, 118 : 315 - 320
  • [23] Positive Operator-Valued Measures in Quantum Decision Theory
    Yukalov, Vyacheslav I.
    Sornette, Didier
    [J]. QUANTUM INTERACTION (QI 2014), 2015, 8951 : 146 - 161
  • [24] Multilinear operator-valued Calderon-Zygmund theory
    Di Plinio, Francesco
    Li, Kangwei
    Martikainen, Henri
    Vuorinen, Emil
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (08)
  • [25] OPERATOR-VALUED MEASURES IN QUANTUM DECISION AND ESTIMATION THEORY
    HELSTROM, CW
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A163 - A163
  • [26] CALDERON-ZYGMUND THEORY FOR OPERATOR-VALUED KERNELS
    DEFRANCIA, JLR
    RUIZ, FJ
    TORREA, JL
    [J]. ADVANCES IN MATHEMATICS, 1986, 62 (01) : 7 - 48
  • [27] Operator-valued chordal Loewner chains and non-commutative probability
    Jekel, David
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (10)
  • [28] Generalized operators and operator-valued distributions in quantum field theory
    Huang, ZY
    Wang, XJ
    Wang, CS
    [J]. ACTA MATHEMATICA SCIENTIA, 2003, 23 (02) : 145 - 154
  • [29] An operator-valued Lyapunov theorem
    Plosker, Sarah
    Ramsey, Christopher
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 469 (01) : 117 - 125
  • [30] On operator-valued spherical functions
    Stetkær, H
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 224 (02) : 338 - 351