Water-soluble polysaccharides promoting production of redispersible nanocellulose

被引:7
|
作者
Hu, Liqiu [1 ]
Xu, Wenyang [1 ]
Gustafsson, Jan [1 ]
Koppolu, Rajesh [1 ]
Wang, Qingbo [1 ]
Rosqvist, Emil [2 ]
Sundberg, Anna [1 ]
Peltonen, Jouko [2 ]
Willfor, Stefan [1 ]
Toivakka, Martti [1 ]
Xu, Chunlin [1 ]
机构
[1] Abo Akad Univ, Lab Nat Mat Technol, Henrikinkatu 2, FI-20500 Turku, Finland
[2] Abo Akad Univ, Lab Mol Sci & Engn, Henrikinkatu 2, FI-20500 Turku, Finland
关键词
Nanocellulose; Water-soluble polysaccharides; Redispersibility; Fibre-to-fibre interaction; Energy consumption decrease; MICROFIBRILLATED CELLULOSE SUSPENSIONS; NANOFIBRILLATED CELLULOSE; RHEOLOGICAL CHARACTERIZATION; CARBOXYMETHYL CELLULOSE; FILMS; GALACTOGLUCOMANNAN; HEMICELLULOSE; HOMOGENIZATION; NANOCRYSTALS; FLOCCULATION;
D O I
10.1016/j.carbpol.2022.119976
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
To date, the energy-intensive production and high-water content severely limits nanocellulose applications on a large scale off-site. In this study, adding water-soluble polysaccharides (PS) to achieve an integrated process of water-redispersible nanocellulose production was well established. The addition of PS, in particular carboxymethylated-galactoglucomannan (cm-GGM), facilitates fibre fibrillation enabling homogenization at a higher solid content at 1.5 wt% compared with around 0.4 wt% for neat fibre. More importantly, the addition of cm-GGM saved 73 % energy in comparison without PS addition. Good water redispersibility of thus-prepared nanocellulose was validated in viewpoints of size distribution, morphology, viscosity and film properties as compared with neat nanocellulose. The tensile strength and optical transmittance of nanocellulose films increased to 116 MPa and 77 % compared to those without PS addition of 62 MPa and 74 %, respectively. Collectively, this study provides a new avenue for large-volume production of redispersible nanocellulose at a high solid content with less energy-consumption.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] WATER-SOLUBLE POLYSACCHARIDES OF AMELANCHIER-OVALIS RACEMES
    MARTYNOV, EG
    STROEV, EA
    KHIMIYA PRIRODNYKH SOEDINENII, 1988, (04): : 587 - 588
  • [22] Interaction of water-soluble polysaccharides of Limonium bicolor with BSA
    Zhang, Lian-ru
    Yan, Xue-fen
    Zheng, Zhong-hui
    Zou, Guo-lin
    CHEMISTRY OF NATURAL COMPOUNDS, 2006, 42 (04) : 389 - 390
  • [23] Interaction of water-soluble polysaccharides of Limonium bicolor with BSA
    Lian-ru Zhang
    Xue-fen Yan
    Zhong-hui Zheng
    Guo-lin Zou
    Chemistry of Natural Compounds, 2006, 42 : 389 - 390
  • [24] Study on binding of REEs with water-soluble polysaccharides in fern
    Y. Q. Wang
    J. X. Sun
    F. Q. Guo
    Z. Y Zhang
    H. M. Chen
    L. Xu
    G. Y. Cao
    Biological Trace Element Research, 1999, 71-72 : 103 - 108
  • [25] Pulsed NMR study of polysaccharides and their water-soluble derivatives
    Ulughbek Uzbekistan National Univ., Vuzgorodok, Tashkent, 700174, Uzbekistan
    Vysokomolekularnye Soedineniya. Ser.A Ser.B Ser.C - Kratkie Soobshcheniya, 2001, 43 (09): : 1570 - 1573
  • [26] HOT WATER-SOLUBLE POLYSACCHARIDES OF PLATYMONAS-SP
    IRIKI, Y
    JOURNAL OF THE AGRICULTURAL CHEMICAL SOCIETY OF JAPAN, 1975, 49 (01): : 3 - 7
  • [27] The sugar composition of the water-soluble polysaccharides from ramie
    Zhang, HS
    Yang, JG
    Zhang, CT
    CELLULOSE CHEMISTRY AND TECHNOLOGY, 1995, 29 (04): : 397 - 402
  • [28] Water-Soluble Polyelectrolyte Complexes of Oppositely Charged Polysaccharides
    Shchipunov, Yury A.
    Postnova, Irina V.
    COMPOSITE INTERFACES, 2009, 16 (4-6) : 251 - 279
  • [29] WATER-SOLUBLE POLYSACCHARIDES OF SOME REPRESENTATIVES OF THE FAMILY VACCINIACEAE
    MARTYNOV, EG
    STROEV, EA
    KHIMIYA PRIRODNYKH SOEDINENII, 1984, (03): : 384 - 384
  • [30] The Influence of Water-Soluble Polysaccharides of Crataegus sanguinea Pall. on Nitric Oxide Production by Macrophages
    A. A. Ligacheva
    E. Yu. Sherstoboev
    M. G. Danilets
    E. S. Trofimova
    S. V. Krivoshchekov
    S. R. Khasanova
    N. V. Kudashkina
    A. M. Gur’ev
    M. V. Belousov
    Bulletin of Experimental Biology and Medicine, 2021, 172 : 151 - 154