Progress on Applications of Deep Learning in Super-Resolution Microscopy Imaging

被引:0
|
作者
Lu Qingshuang [1 ]
Jin Luhong [2 ]
Xu Yingke [2 ]
机构
[1] Zhejiang Inst Econ & Trade, Dept Humanities & Tourism, Hangzhou 310018, Zhejiang, Peoples R China
[2] Zhejiang Univ, Dept Biomed Engn, Key Lab Biomed Engn,Minist Educ, Zhejiang Prov Key Lab Cardiocerebral Vasc Detect, Hangzhou 310027, Zhejiang, Peoples R China
关键词
medical optics; fluorescence microscopy; super-resolution microscopy; deep learning; image reconstruction; LOCALIZATION MICROSCOPY; MOLECULE LOCALIZATION; RECONSTRUCTION ALGORITHM; FLUORESCENCE MICROSCOPY; RESOLUTION; STORM; DYNAMICS; IMAGES;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Researchers can now identify dynamic activitiesliving cells at the nanoscale with remarkable temporal and spatial resolution because of the advancement in fluorescent super -resolution imaging. Traditional perresolution microscopy requires high --power lasers or numerous raw images to rebuild a single super --resolution image, limiting its applicadons in live cell dynamic imaging. In many ways, deep learning -driven super -resolution imaging approaches break the bottleneck of existing super resolutionimaging technology. In this review, we explain the theory of optical super-resolution imaging systems and discuss their limitations. Furthermore, we outline the most recent advances and applications of deep learning in the field of super --resolution imaging, as well as address challenging difficulties and future possibilities.
引用
收藏
页数:14
相关论文
共 83 条
  • [1] High-resolution restoration of 3D structures from widefield images with extreme low signal-to-noise-ratio
    Arigovindan, Muthuvel
    Fung, Jennifer C.
    Elnatan, Daniel
    Mennella, Vito
    Chan, Yee-Hung Mark
    Pollard, Michael
    Branlund, Eric
    Sedat, John W.
    Agard, David A.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (43) : 17344 - 17349
  • [2] SIMcheck: a Toolbox for Successful Super-resolution Structured Illumination Microscopy
    Ball, Graeme
    Demmerle, Justin
    Kaufmann, Rainer
    Davis, Ilan
    Dobbie, Ian M.
    Schermelleh, Lothar
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [3] Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction
    Belthangady, Chinmay
    Royer, Loic A.
    [J]. NATURE METHODS, 2019, 16 (12) : 1215 - 1225
  • [4] Imaging intracellular fluorescent proteins at nanometer resolution
    Betzig, Eric
    Patterson, George H.
    Sougrat, Rachid
    Lindwasser, O. Wolf
    Olenych, Scott
    Bonifacino, Juan S.
    Davidson, Michael W.
    Lippincott-Schwartz, Jennifer
    Hess, Harald F.
    [J]. SCIENCE, 2006, 313 (5793) : 1642 - 1645
  • [5] Introduction: Super-Resolution and Single-Molecule Imaging
    Biteen, Julie
    Willets, Katherine A.
    [J]. CHEMICAL REVIEWS, 2017, 117 (11) : 7241 - 7243
  • [6] A non-local algorithm for image denoising
    Buades, A
    Coll, B
    Morel, JM
    [J]. 2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2005, : 60 - 65
  • [7] Multi-color live-cell super-resolution volume imaging with multi-angle interference microscopy
    Chen, Youhua
    Liu, Wenjie
    Zhang, Zhimin
    Zheng, Cheng
    Huang, Yujia
    Cao, Ruizhi
    Zhu, Dazhao
    Xu, Liang
    Zhang, Meng
    Zhang, Yu-Hui
    Fan, Jiannan
    Jin, Luhong
    Xu, Yingke
    Kuang, Cuifang
    Liu, Xu
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [8] In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images
    Christiansen, Eric M.
    Yang, Samuel J.
    Ando, D. Michael
    Javaherian, Ashkan
    Skibinski, Gaia
    Lipnick, Scott
    Mount, Elliot
    O'Neil, Alison
    Shah, Kevan
    Lee, Alicia K.
    Goyal, Piyush
    Fedus, William
    Poplin, Ryan
    Esteva, Andre
    Berndl, Marc
    Rubin, Lee L.
    Nelson, Philip
    Finkbeiner, Steven
    [J]. CELL, 2018, 173 (03) : 792 - +
  • [9] Localization microscopy at doubled precision with patterned illumination
    Cnossen, Jelmer
    Hinsdale, Taylor
    Thorsen, Rasmus O.
    Siemons, Marijn
    Schueder, Florian
    Jungmann, Ralf
    Smith, Carlas S.
    Rieger, Bernd
    Stallinga, Sjoerd
    [J]. NATURE METHODS, 2020, 17 (01) : 59 - +
  • [10] Cox S, 2012, NAT METHODS, V9, P195, DOI [10.1038/NMETH.1812, 10.1038/nmeth.1812]