DESCRIBING TORIC VARIETIES AND THEIR EQUIVARIANT COHOMOLOGY

被引:15
|
作者
Franz, Matthias [1 ]
机构
[1] Univ Western Ontario, Dept Math, London, ON N6A 5B7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
toric variety; equivariant CW complex; piecewise polynomials; torsion-free cohomology; TORUS ACTIONS; MODULES;
D O I
10.4064/cm121-1-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Topologically, compact toric varieties can be constructed as identification spaces: they are quotients of the product of a compact torus and the order complex of the fan. We give a detailed proof of this fact, extend it to the non-compact case and draw several, mostly cohomological conclusions. In particular, we show that the equivariant integral cohomology of a toric variety can be described in terms of piecewise polynomials on the fan if the ordinary integral cohomology is concentrated in even degrees. This generalizes a result of Bahri-Franz-Ray to the non-compact case. We also investigate torsion phenomena in integral cohomology.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [21] The Chow cohomology of affine toric varieties
    Edidin, Dan
    Richey, Ryan
    MATHEMATICAL RESEARCH LETTERS, 2020, 27 (06) : 1645 - 1667
  • [22] Cohomology of complete intersections in toric varieties
    Mavlyutov, AR
    PACIFIC JOURNAL OF MATHEMATICS, 1999, 191 (01) : 133 - 144
  • [23] The equivariant cohomology rings of Peterson varieties
    Fukukawa, Yukiko
    Harada, Megumi
    Masuda, Mikiya
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2015, 67 (03) : 1147 - 1159
  • [24] The equivariant cohomology ring of regular varieties
    Brion, M
    Carrell, JB
    MICHIGAN MATHEMATICAL JOURNAL, 2004, 52 (01) : 189 - 203
  • [25] Graded rings and equivariant sheaves on toric varieties
    Perling, M
    MATHEMATISCHE NACHRICHTEN, 2004, 263 : 181 - 197
  • [26] The equivariant K-theory of toric varieties
    Au, Suanne
    Huang, Mu-Wan
    Walker, Mark E.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2009, 213 (05) : 840 - 845
  • [27] On the integral cohomology ring of toric orbifolds and singular toric varieties
    Bahri, Anthony
    Sarkar, Soumen
    Song, Jongbaek
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2017, 17 (06): : 3779 - 3810
  • [28] The torus equivariant cohomology rings of Springer varieties
    Abe, Hiraku
    Horiguchi, Tatsuya
    TOPOLOGY AND ITS APPLICATIONS, 2016, 208 : 143 - 159
  • [29] Vector fields and the cohomology ring of toric varieties
    Kaveh, K
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2005, 48 (03): : 414 - 427
  • [30] RATIONAL INTERSECTION COHOMOLOGY OF PROJECTIVE TORIC VARIETIES
    FIESELER, KH
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1991, 413 : 88 - 98