Hierarchical Intrusion Detection Using Machine Learning and Knowledge Model

被引:31
|
作者
Sarnovsky, Martin [1 ]
Paralic, Jan [1 ]
机构
[1] Tech Univ Kosice, Dept Cybernet & Artificial Intelligence, Fac Elect Engn & Informat, Letna 9, Kosice 04001, Slovakia
来源
SYMMETRY-BASEL | 2020年 / 12卷 / 02期
关键词
intrusion detection; machine learning; classification; knowledge modelling; DETECTION SYSTEM;
D O I
10.3390/sym12020203
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Intrusion detection systems (IDS) present a critical component of network infrastructures. Machine learning models are widely used in the IDS to learn the patterns in the network data and to detect the possible attacks in the network traffic. Ensemble models combining a variety of different machine learning models proved to be efficient in this domain. On the other hand, knowledge models have been explicitly designed for the description of the attacks and used in ontology-based IDS. In this paper, we propose a hierarchical IDS based on the original symmetrical combination of machine learning approach with knowledge-based approach to support detection of existing types and severity of new types of network attacks. Multi-stage hierarchical prediction consists of the predictive models able to distinguish the normal connections from the attacks and then to predict the attack classes and concrete attack types. The knowledge model enables to navigate through the attack taxonomy and to select the appropriate model to perform a prediction on the selected level. Designed IDS was evaluated on a widely used KDD 99 dataset and compared to similar approaches.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Enhancing Intrusion Detection System Using Machine Learning and Deep Learning
    Madhusudhan, R.
    Thakur, Shubham Kumar
    Pravisha, P.
    ADVANCED INFORMATION NETWORKING AND APPLICATIONS, VOL 3, AINA 2024, 2024, 201 : 326 - 337
  • [32] A dependable hybrid machine learning model for network intrusion detection
    Talukder, Md. Alamin
    Hasan, Khondokar Fida
    Islam, Md. Manowarul
    Uddin, Md. Ashraf
    Akhter, Arnisha
    Abu Yousuf, Mohammand
    Alharbi, Fares
    Moni, Mohammad Ali
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2023, 72
  • [33] Security intrusion detection using quantum machine learning techniques
    Kalinin, Maxim
    Krundyshev, Vasiliy
    JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES, 2023, 19 (01) : 125 - 136
  • [34] Analysis on intrusion detection system using machine learning techniques
    Seraphim B.I.
    Poovammal E.
    Lecture Notes on Data Engineering and Communications Technologies, 2021, 66 : 423 - 441
  • [35] Classification of Intrusion Detection Dataset using machine learning Approaches
    Subramanyam, Doodipalli
    PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON COMPUTATIONAL TECHNIQUES, ELECTRONICS AND MECHANICAL SYSTEMS (CTEMS), 2018, : 280 - 283
  • [36] Security intrusion detection using quantum machine learning techniques
    Maxim Kalinin
    Vasiliy Krundyshev
    Journal of Computer Virology and Hacking Techniques, 2023, 19 : 125 - 136
  • [37] SOME/IP Intrusion Detection System Using Machine Learning
    Heo, Jaewoong
    Kim, Hyunghoon
    Jo, Hyo Jin
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (11) : 1923 - 1924
  • [38] Intrusion Detection on the In-Vehicle Network Using Machine Learning
    Sharmin, Shaila
    Mansor, Hafizah
    2021 3RD INTERNATIONAL CYBER RESILIENCE CONFERENCE (CRC), 2021, : 26 - 31
  • [39] Database Intrusion Detection System Using Octraplet and Machine Learning
    Jayaprakash, Souparnika
    Kandasamy, Kamalanathan
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICICCT), 2018, : 1413 - 1416
  • [40] Intrusion Detection in SCADA systems using Machine Learning Techniques
    Maglaras, Leandros A.
    Jiang, Jianmin
    2014 SCIENCE AND INFORMATION CONFERENCE (SAI), 2014, : 626 - 631