Covariate Assisted Principal regression for covariance matrix outcomes

被引:15
|
作者
Zhao, Yi [1 ,2 ]
Wang, Bingkai [1 ]
Mostofsky, Stewart H. [3 ]
Caffo, Brian S. [1 ]
Luo, Xi [4 ]
机构
[1] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Biostat, 615 N Wolfe St, Baltimore, MD 21205 USA
[2] Indiana Univ Sch Med, Dept Biostat, 410 W 10th St, Indianapolis, IN 46202 USA
[3] Johns Hopkins Univ, Kennedy Krieger Inst, Ctr Neurodev & Imaging Res CNIR, 707 N Broadway, Baltimore, MD 21205 USA
[4] Univ Texas Hlth Sci Ctr Houston, Dept Biostat & Data Sci, 1200 Pressler St, Houston, TX 77030 USA
基金
美国国家卫生研究院;
关键词
Common diagonalization; Heteroscedasticity; Linear projection; FUNCTIONAL CONNECTIVITY; COMPONENT ANALYSIS; MODELS; SEX;
D O I
10.1093/biostatistics/kxz057
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study, we consider the problem of regressing covariance matrices on associated covariates. Our goal is to use covariates to explain variation in covariance matrices across units. As such, we introduce Covariate Assisted Principal (CAP) regression, an optimization-based method for identifying components associated with the covariates using a generalized linear model approach. We develop computationally efficient algorithms to jointly search for common linear projections of the covariance matrices, as well as the regression coefficients. Under the assumption that all the covariance matrices share identical eigen-components, we establish the asymptotic properties. In simulation studies, our CAP method shows higher accuracy and robustness in coefficient estimation over competing methods. In an example resting-state functional magnetic resonance imaging study of healthy adults, CAP identifies human brain network changes associated with subject demographics.
引用
收藏
页码:629 / 645
页数:17
相关论文
共 50 条
  • [1] Longitudinal regression of covariance matrix outcomes
    Zhao, Yi
    Caffo, Brian S.
    Luo, Xi
    [J]. BIOSTATISTICS, 2022, 25 (02) : 385 - 401
  • [2] Bayesian estimation of covariate assisted principal regression for brain functional connectivity
    Park, Hyung G.
    [J]. BIOSTATISTICS, 2024,
  • [3] Forecast comparison of principal component regression and principal covariate regression
    Heij, Christiaan
    Groenen, Patrick J. F.
    van Dijk, Dick
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (07) : 3612 - 3625
  • [4] Functional principal component regression with noisy covariate
    Crambes, Christophe
    [J]. COMPTES RENDUS MATHEMATIQUE, 2007, 345 (09) : 519 - 522
  • [5] Estimation on inverse regression using principal components of covariance matrix of sliced data
    Akita, Tomoyuki
    [J]. HIROSHIMA MATHEMATICAL JOURNAL, 2011, 41 (01) : 41 - 53
  • [6] Principal regression for high dimensional covariance matrices
    Zhao, Yi
    Caffo, Brian
    Luo, Xi
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (02): : 4192 - 4235
  • [7] A note on kernel assisted estimators in missing covariate regression
    Wang, SJ
    Wang, CY
    [J]. STATISTICS & PROBABILITY LETTERS, 2001, 55 (04) : 439 - 449
  • [8] PRINCIPAL COMPONENT ANALYSIS WITH DROP RANK COVARIANCE MATRIX
    Guo, Yitong
    Ling, Bingo Wing-Kuen
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2021, 17 (05) : 2345 - 2366
  • [9] Covariance Matrix Preparation for Quantum Principal Component Analysis
    Gordon, Max Hunter
    Cerezo, M.
    Cincio, Lukasz
    Coles, Patrick J.
    [J]. PRX QUANTUM, 2022, 3 (03):
  • [10] Regression models with unknown singular covariance matrix
    Srivastava, MS
    von Rosen, D
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 354 (1-3) : 255 - 273