Functional principal component regression with noisy covariate

被引:0
|
作者
Crambes, Christophe [1 ]
机构
[1] Univ Toulouse 3, Lab Stat & Probabil, F-31062 Toulouse, France
关键词
D O I
10.1016/j.crma.2007.10.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This Note deals with a study of the functional linear model when the covariate is noisy. We smooth each noisy curve using a kernel smoothing method, and then a functional principal component regression is done. We present the estimation procedure of the functional coefficient of the model, as well as a convergence result of the estimator.
引用
收藏
页码:519 / 522
页数:4
相关论文
共 50 条
  • [1] Forecast comparison of principal component regression and principal covariate regression
    Heij, Christiaan
    Groenen, Patrick J. F.
    van Dijk, Dick
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (07) : 3612 - 3625
  • [2] Elastic functional principal component regression
    Tucker, J. Derek
    Lewis, John R.
    Srivastava, Anuj
    [J]. STATISTICAL ANALYSIS AND DATA MINING, 2019, 12 (02) : 101 - 115
  • [3] Bayesian estimation of covariate assisted principal regression for brain functional connectivity
    Park, Hyung G.
    [J]. BIOSTATISTICS, 2024,
  • [4] Robust Principal Component Functional Logistic Regression
    Denhere, Melody
    Billor, Nedret
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (01) : 264 - 281
  • [5] Functional principal component regression and functional partial least squares
    Reiss, Philip T.
    Ogden, R. Todd
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (479) : 984 - 996
  • [6] Functional principal component regression for continuous spectra data
    Huang, Lele
    Wang, Huiwen
    Zhu, Jia
    [J]. Huang, L. (nanhuabiren@163.com), 1600, Beijing University of Aeronautics and Astronautics (BUAA) (40): : 792 - 796
  • [7] Minimax rate in prediction for functional principal component regression
    Yang, Guangren
    Lin, Hongmei
    Lian, Heng
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (05) : 1240 - 1249
  • [8] Principal Component Regression by Principal Component Selection
    Lee, Hosung
    Park, Yun Mi
    Lee, Seokho
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2015, 22 (02) : 173 - 180
  • [9] Principal component regression, ridge regression and ridge principal component regression in spectroscopy calibration
    Vigneau, E
    Devaux, MF
    Qannari, EM
    Robert, P
    [J]. JOURNAL OF CHEMOMETRICS, 1997, 11 (03) : 239 - 249
  • [10] Penalized Spline Approaches for Functional Principal Component Logit Regression
    Aguilera, A.
    Aguilera-Morillo, M. C.
    Escabias, M.
    Valderrama, M.
    [J]. RECENT ADVANCES IN FUNCTIONAL DATA ANALYSIS AND RELATED TOPICS, 2011, : 1 - 7