On the existence of pullback attractors for non-autonomous reaction-diffusion equations

被引:56
|
作者
Wang, Yonghai [1 ]
Zhong, Chengkui [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
D O I
10.1080/14689360701611821
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the existence of pullback attractors for a nonautonomous nonlinear reaction-diffusion equation with a nonlinearity having a polynomial growth of arbitrary order p-1 (p >= 2). The pullback attractors are obtained in H-0(1)(Q). For this purpose, some abstract results are established by the method of measure of noncompactness.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [21] Uniform attractors for the non-autonomous reaction-diffusion equations with delays
    Zhu, Kaixuan
    Xie, Yongqin
    Zhou, Feng
    Li, Xin
    [J]. ASYMPTOTIC ANALYSIS, 2021, 123 (3-4) : 263 - 288
  • [22] Pullback attractors for a class of non-autonomous nonclassical diffusion equations
    Cung The Anh
    Tang Quoc Bao
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (02) : 399 - 412
  • [23] Pullback attractors for reaction-diffusion delay equations on unbounded domains with non-autonomous deterministic and stochastic forcing terms
    Wang, Jingyu
    Wang, Yejuan
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (08)
  • [24] Finite Fractal Dimension Of Pullback Attractors And Application To Non-Autonomous Reaction Diffusion Equations
    Li, Yongjun
    Wang, Suyun
    Wei, Jinying
    [J]. APPLIED MATHEMATICS E-NOTES, 2010, 10 : 19 - 26
  • [25] Pullback attractors for a non-autonomous plate equations
    Kang, Jum-Ran
    [J]. APPLICABLE ANALYSIS, 2014, 93 (04) : 875 - 888
  • [26] Existence and regularity of time-dependent pullback attractors for the non-autonomous nonclassical diffusion equations
    Qin, Yuming
    Yang, Bin
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2022, 152 (06) : 1533 - 1550
  • [27] ATTRACTORS FOR NON-AUTONOMOUS REACTION-DIFFUSION EQUATIONS WITH FRACTIONAL DIFFUSION IN LOCALLY UNIFORM SPACES
    Yue, Gaocheng
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (04): : 1645 - 1671
  • [28] Fractal dimension of random attractors for stochastic non-autonomous reaction-diffusion equations
    Zhou, Shengfan
    Tian, Yongxiao
    Wang, Zhaojuan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2016, 276 : 80 - 95
  • [29] Pullback attractors of nonautonomous reaction-diffusion equations
    Song, Haitao
    Wu, Hongqing
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (02) : 1200 - 1215
  • [30] Fractal Dimension of Random Attractors for Non-autonomous Fractional Stochastic Reaction-diffusion Equations
    Shu Ji
    Bai Qianqian
    Huang Xin
    Zhang Jian
    [J]. JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2020, 33 (04): : 377 - 394