A data-driven framework for neural field modeling

被引:45
|
作者
Freestone, D. R. [1 ,2 ,3 ]
Aram, P. [4 ]
Dewar, M. [3 ,5 ]
Scerri, K. [6 ]
Grayden, D. B. [1 ,2 ]
Kadirkamanathan, V. [4 ]
机构
[1] Univ Melbourne, Dept Elect & Elect Engn, Melbourne, Vic, Australia
[2] Bion Ear Inst, Melbourne, Vic, Australia
[3] Univ Edinburgh, Inst Adapt & Neural Computat, Edinburgh, Midlothian, Scotland
[4] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield, S Yorkshire, England
[5] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA
[6] Univ Malta, Dept Syst & Control Engn, Msida, MSD, Malta
基金
澳大利亚研究理事会;
关键词
Neural field model; Nonlinear estimation; Intracortical connectivity; Nonlinear dynamics; EEG; DYNAMICS; TIME; TRANSITION; GENERATION; RESPONSES; NETWORKS; ALPHA;
D O I
10.1016/j.neuroimage.2011.02.027
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
This paper presents a framework for creating neural field models from electrophysiological data. The Wilson and Cowan or Amari style neural field equations are used to form a parametric model, where the parameters are estimated from data. To illustrate the estimation framework, data is generated using the neural field equations incorporating modeled sensors enabling a comparison between the estimated and true parameters. To facilitate state and parameter estimation, we introduce a method to reduce the continuum neural field model using a basis function decomposition to form a finite-dimensional state-space model. Spatial frequency analysis methods are introduced that systematically specify the basis function configuration required to capture the dominant characteristics of the neural field. The estimation procedure consists of a two-stage iterative algorithm incorporating the unscented Rauch-Tung-Striebel smoother for state estimation and a least squares algorithm for parameter estimation. The results show that it is theoretically possible to reconstruct the neural field and estimate intracortical connectivity structure and synaptic dynamics with the proposed framework. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1043 / 1058
页数:16
相关论文
共 50 条
  • [21] Developing a data-driven modeling framework for simulating a chemical accident in freshwater
    Kim, Soobin
    Abbas, Ather
    Pyo, Jongchoel
    Kim, Hyein
    Hong, Seok Min
    Baek, Sang-Soo
    Cho, Kyung Hwa
    [J]. JOURNAL OF CLEANER PRODUCTION, 2023, 425
  • [22] Distributed Modeling in a MapReduce Framework for Data-Driven Traffic Flow Forecasting
    Chen, Cheng
    Liu, Zhong
    Lin, Wei-Hua
    Li, Shuangshuang
    Wang, Kai
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2013, 14 (01) : 22 - 33
  • [23] Cooperative data-driven modeling
    Dekhovich, Aleksandr
    Turan, O. Taylan
    Yi, Jiaxiang
    Bessa, Miguel A.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 417
  • [24] Predicting part distortion field in additive manufacturing: a data-driven framework
    Aljarrah, Osama
    Li, Jun
    Heryudono, Alfa
    Huang, Wenzhen
    Bi, Jing
    [J]. JOURNAL OF INTELLIGENT MANUFACTURING, 2023, 34 (04) : 1975 - 1993
  • [25] Predicting part distortion field in additive manufacturing: a data-driven framework
    Osama Aljarrah
    Jun Li
    Alfa Heryudono
    Wenzhen Huang
    Jing Bi
    [J]. Journal of Intelligent Manufacturing, 2023, 34 : 1975 - 1993
  • [26] A Data-Driven Deep Neural Network for Modeling of Ionospheric Clutter in HFSWR
    Lyu, Zhe
    Yu, Changjun
    Wang, Rong
    Liu, Aijun
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [27] Data-Driven Modeling of Biodiesel Production Using Artificial Neural Networks
    Mogilicharla, Anitha
    Reddy, P. Swapna
    [J]. CHEMICAL ENGINEERING & TECHNOLOGY, 2021, 44 (05) : 901 - 905
  • [28] A Fuzzy Neural Network System Modeling Method Based on Data-driven
    Shao, Keyong
    Fan, Xin
    Han, Shengmei
    Li, Shaofeng
    [J]. 2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 624 - +
  • [29] Bayesian neural networks for uncertainty quantification in data-driven materials modeling
    Olivier, Audrey
    Shields, Michael D.
    Graham-Brady, Lori
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 386
  • [30] A Framework for Data-Driven Automata Design
    Zhang, Yuanrui
    Chen, Yixiang
    Ma, Yujing
    [J]. REQUIREMENTS ENGINEERING IN THE BIG DATA ERA, 2015, 558 : 33 - 47