A data-driven framework for neural field modeling

被引:45
|
作者
Freestone, D. R. [1 ,2 ,3 ]
Aram, P. [4 ]
Dewar, M. [3 ,5 ]
Scerri, K. [6 ]
Grayden, D. B. [1 ,2 ]
Kadirkamanathan, V. [4 ]
机构
[1] Univ Melbourne, Dept Elect & Elect Engn, Melbourne, Vic, Australia
[2] Bion Ear Inst, Melbourne, Vic, Australia
[3] Univ Edinburgh, Inst Adapt & Neural Computat, Edinburgh, Midlothian, Scotland
[4] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield, S Yorkshire, England
[5] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA
[6] Univ Malta, Dept Syst & Control Engn, Msida, MSD, Malta
基金
澳大利亚研究理事会;
关键词
Neural field model; Nonlinear estimation; Intracortical connectivity; Nonlinear dynamics; EEG; DYNAMICS; TIME; TRANSITION; GENERATION; RESPONSES; NETWORKS; ALPHA;
D O I
10.1016/j.neuroimage.2011.02.027
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
This paper presents a framework for creating neural field models from electrophysiological data. The Wilson and Cowan or Amari style neural field equations are used to form a parametric model, where the parameters are estimated from data. To illustrate the estimation framework, data is generated using the neural field equations incorporating modeled sensors enabling a comparison between the estimated and true parameters. To facilitate state and parameter estimation, we introduce a method to reduce the continuum neural field model using a basis function decomposition to form a finite-dimensional state-space model. Spatial frequency analysis methods are introduced that systematically specify the basis function configuration required to capture the dominant characteristics of the neural field. The estimation procedure consists of a two-stage iterative algorithm incorporating the unscented Rauch-Tung-Striebel smoother for state estimation and a least squares algorithm for parameter estimation. The results show that it is theoretically possible to reconstruct the neural field and estimate intracortical connectivity structure and synaptic dynamics with the proposed framework. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1043 / 1058
页数:16
相关论文
共 50 条
  • [1] An interpretable framework of data-driven turbulence modeling using deep neural networks
    Jiang, Chao
    Vinuesa, Ricardo
    Chen, Ruilin
    Mi, Junyi
    Laima, Shujin
    Li, Hui
    [J]. PHYSICS OF FLUIDS, 2021, 33 (05)
  • [2] Practical framework for data-driven RANS modeling with data augmentation
    Xianwen Guo
    Zhenhua Xia
    Shiyi Chen
    [J]. Acta Mechanica Sinica, 2021, 37 : 1748 - 1756
  • [3] Practical framework for data-driven RANS modeling with data augmentation
    Guo, Xianwen
    Xia, Zhenhua
    Chen, Shiyi
    [J]. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37 (12): : 1748 - 1756
  • [4] A Structure Data-Driven Framework for Virtual Metrology Modeling
    Yang, Wei-Ting
    Blue, Jakey
    Roussy, Agnes
    Pinaton, Jacques
    Reis, Marco S.
    [J]. IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2020, 17 (03) : 1297 - 1306
  • [5] Validating a data-driven framework for vehicular traffic modeling
    Lane, Daniel
    Roy, Subhradeep
    [J]. JOURNAL OF PHYSICS-COMPLEXITY, 2024, 5 (02):
  • [6] A Data-Driven Based Framework of Model Optimization and Neural Network Modeling for Microbial Fuel Cells
    Ma, Fengying
    Yin, Yankai
    Pang, Shaopeng
    Liu, Jiaxun
    Chen, Wei
    [J]. IEEE ACCESS, 2019, 7 : 162036 - 162049
  • [7] A framework for designing data-driven optimization systems for neural modulation
    Connolly, Mark J.
    Park, Sang-Eon
    Laxpati, Nealen G.
    Zaidi, Syed Ali
    Ghetiya, Mihir
    Fernandez, Alejandra M.
    Gutekunst, Claire-Anne
    Gross, Robert E.
    [J]. JOURNAL OF NEURAL ENGINEERING, 2021, 18 (01)
  • [8] Magnetic Field Simulation With Data-Driven Material Modeling
    De Gersem, Herbert
    Galetzka, Armin
    Ion, Ion Gabriel
    Loukrezis, Dimitrios
    Roemer, Ulrich
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2020, 56 (08)
  • [9] Framework for data-driven propeller and rudder modeling for ship maneuvering
    Knight, Bradford G.
    Maki, Kevin J.
    [J]. OCEAN ENGINEERING, 2022, 263
  • [10] Data-driven intelligent modeling framework for the steam cracking process
    Zhao, Qiming
    Bi, Kexin
    Qiu, Tong
    [J]. CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2023, 61 : 237 - 247