Computational Discrete Geometry

被引:0
|
作者
Hales, Thomas C. [1 ]
机构
[1] Univ Pittsburgh, Pittsburgh, PA 15260 USA
来源
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In recent years, computers have been used regularly to solve major problems in discrete geometry. The talk at ICMS 2010 will give a survey of the computational methods. The extended abstract that is provided below mentions a few of the problems that will be discussed.
引用
收藏
页码:1 / 3
页数:3
相关论文
共 50 条
  • [31] Computability in computational geometry
    Edalat, A
    Khanban, AA
    Lieutier, A
    [J]. NEW COMPUTATIONAL PARADIGMS, 2005, 3526 : 117 - 127
  • [32] COMPUTATIONAL GEOMETRY - A SURVEY
    LEE, DT
    PREPARATA, FP
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 1984, 33 (12) : 1072 - 1101
  • [33] Derandomization in computational geometry
    Matousek, J
    [J]. JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1996, 20 (03): : 545 - 580
  • [34] MANUFACTURING AND COMPUTATIONAL GEOMETRY
    YAP, C
    [J]. IEEE COMPUTATIONAL SCIENCE & ENGINEERING, 1995, 2 (02): : 82 - 84
  • [35] Computational geometry and uncertainty
    Forrest, AR
    [J]. UNCERTAINTY IN GEOMETRIC COMPUTATIONS, 2002, 704 : 69 - 77
  • [36] Computational Geometry: Editorial
    Aichholzer, Oswin
    Aurenhammer, Franz
    [J]. Computational Geometry: Theory and Applications, 2009, 42 (08):
  • [37] COMPUTATIONAL SYNTHETIC GEOMETRY
    BOKOWSKI, J
    STURMFELS, B
    [J]. LECTURE NOTES IN MATHEMATICS, 1989, 1355 : 1 - 166
  • [38] COMPUTATIONAL GEOMETRY AND GEOGRAPHY
    NAGY, G
    WAGLE, S
    [J]. PROFESSIONAL GEOGRAPHER, 1980, 32 (03): : 343 - 354
  • [39] Computational conformal geometry
    Seppala, M
    [J]. ALGORITHMS IN ALGEBRAIC GEOMETRY AND APPLICATIONS, 1996, 143 : 365 - 372
  • [40] Workbench for computational geometry
    Epstein, P.
    Kavanagh, J.
    Knight, A.
    May, J.
    Nguyen, T.
    Sack, J.-R.
    [J]. Algorithmica (New York), 1994, 11 (04): : 404 - 428