Reproducibility of gene expression across generations of Affymetrix microarrays

被引:54
|
作者
Nimgaonkar, A [1 ]
Sanoudou, D
Butte, AJ
Haslett, JN
Kunkel, LM
Beggs, AH
Kohane, IS
机构
[1] Harvard Med Sch, Informat Program, Childrens Hosp, Boston, MA 02115 USA
[2] Harvard Univ, Div Hlth Sci & Technol, Cambridge, MA 02138 USA
[3] MIT, Cambridge, MA 02139 USA
[4] Harvard Univ, Childrens Hosp, Div Genet, Sch Med, Boston, MA 02115 USA
关键词
D O I
10.1186/1471-2105-4-27
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: The development of large-scale gene expression profiling technologies is rapidly changing the norms of biological investigation. But the rapid pace of change itself presents challenges. Commercial microarrays are regularly modified to incorporate new genes and improved target sequences. Although the ability to compare datasets across generations is crucial for any long-term research project, to date no means to allow such comparisons have been developed. In this study the reproducibility of gene expression levels across two generations of Affymetrix GeneChips(R) (HuGeneFL and HG-U95A) was measured. Results: Correlation coefficients were computed for gene expression values across chip generations based on different measures of similarity. Comparing the absolute calls assigned to the individual probe sets across the generations found them to be largely unchanged. Conclusion: We show that experimental replicates are highly reproducible, but that reproducibility across generations depends on the degree of similarity of the probe sets and the expression level of the corresponding transcript.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] A comparison of statistical tests for detecting differential expression using affymetrix oligonucleotide microarrays
    Vardhanabhuti, Saran
    Blakemore, Steven J.
    Clark, Steven M.
    Ghosh, Sujoy
    Stephens, Richard J.
    Rajagopalan, Dilip
    OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY, 2006, 10 (04) : 555 - 566
  • [22] Evaluation of gene expression data generated from expired Affymetrix GeneChip® microarrays using MAQC reference RNA samples
    Wen, Zhining
    Wang, Charles
    Shi, Quan
    Huang, Ying
    Su, Zhenqiang
    Hong, Huixiao
    Tong, Weida
    Shi, Leming
    BMC BIOINFORMATICS, 2010, 11
  • [23] Integrating probe-level expression changes across generations of Affymetrix arrays -: art. no. e193
    Elo, LL
    Lahti, L
    Skottman, H
    Kyläniemi, M
    Lahesmaa, R
    Aittokallio, T
    NUCLEIC ACIDS RESEARCH, 2005, 33 (22) : e193
  • [24] Equalizer reduces SNP bias in Affymetrix microarrays
    Quigley, David
    BMC BIOINFORMATICS, 2015, 16
  • [25] Gene expression, chips and microarrays
    Deng, SP
    Vatamaniuk, M
    Chiaccio, M
    Chen, HY
    Doliba, N
    Matschinsky, F
    Markmann, J
    DIABETES, 2004, 53 : A4 - A4
  • [26] Equalizer reduces SNP bias in Affymetrix microarrays
    David Quigley
    BMC Bioinformatics, 16
  • [27] Computational method for reducing variance with Affymetrix microarrays
    Welle, S
    Brooks, AI
    Thornton, CA
    BMC BIOINFORMATICS, 2002, 3 (1)
  • [28] Correction of fluorescence bias on Affymetrix genotyping microarrays
    Rippe, Ralph C. A.
    Meulman, Jacqueline J.
    Eilers, Paul H. C.
    JOURNAL OF CHEMOMETRICS, 2012, 26 (05) : 191 - 196
  • [29] Computational method for reducing variance with Affymetrix microarrays
    Stephen Welle
    Andrew I Brooks
    Charles A Thornton
    BMC Bioinformatics, 3
  • [30] Clinical applications of gene expression microarrays: Reproducibility of a tissue of origin test for Metastatic tumors of unknown origin
    Monzon, F. A.
    Dumur, C. I.
    Lyons-Weiler, M.
    Sciulli, C. M.
    Price, M.
    Buturovic, L.
    Rigl, T.
    Anderson, G. G.
    MODERN PATHOLOGY, 2007, 20 : 353A - 353A