Increased molecular mobility in humid silk fibers under tensile stress

被引:18
|
作者
Seydel, Tilo [1 ]
Knoll, Wiebke [1 ,2 ]
Greving, Imke [3 ]
Dicko, Cedric [3 ]
Koza, Michael M. [1 ]
Krasnov, Igor [4 ]
Mueller, Martin [4 ,5 ]
机构
[1] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France
[2] Univ Grenoble 1, Grenoble, France
[3] Univ Oxford, Dept Zool, Oxford OX1 3PS, England
[4] Univ Kiel, Inst Expt & Angew Phys, D-24098 Kiel, Germany
[5] Helmholtz Zentrum Geesthacht, Mat Res Inst, D-21502 Geesthacht, Germany
来源
PHYSICAL REVIEW E | 2011年 / 83卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
SPIDER SILK; MECHANICAL-PROPERTIES; NEUTRON-SCATTERING; WATER-MOLECULES; HYDRATION WATER; DYNAMICS; NMR; STATE;
D O I
10.1103/PhysRevE.83.016104
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Silk fibers are semicrystalline nanocomposite protein fibers with an extraordinary mechanical toughness that changes with humidity. Diffusive or overdamped motion on a molecular level is absent in dry silkworm silk, but present in humid silk at ambient temperature. This microscopic diffusion distinctly depends on the externally applied macroscopic tensile force. Quasielastic and inelastic neutron-scattering data as a function of humidity and of tensile strain on humid silk fibers support the model that both the adsorbed water and parts of the amorphous polymers participate in diffusive motion and are affected by the tensile force. It is notable that the quasielastic linewidth of humid silk at 100% relative humidity increases significantly with the applied force. The effect of the tensile force is discussed in terms of an increasing alignment of the polymer chains in the amorphous fraction with increasing tensile stress which changes the geometrical restrictions of the diffusive motions.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] STRESS-RELAXATION AND TENSILE MODULUS OF POLYMERIC FIBERS
    VANMILTENBURG, JGM
    TEXTILE RESEARCH JOURNAL, 1991, 61 (06) : 363 - 369
  • [32] Stress-Induced Lamellar Order in Spider Silk Fibers
    Cruz-Chu, Eduardo R.
    Sandeep, Patil
    Greving, Imke
    Mueller, Martin
    Graeter, Frauke
    BIOPHYSICAL JOURNAL, 2015, 108 (02) : 487A - 487A
  • [33] Molecular mobility and order in poly(amidobenzimidazole) fibers
    Egorov, EA
    Shuster, MN
    Zhizhenkov, VV
    Dobrovolskaya, IP
    VYSOKOMOLEKULYARNYE SOEDINENIYA SERIYA A & SERIYA B, 1996, 38 (02): : 246 - 251
  • [34] Tensile properties of short waste silk fibers/wheat protein isolate green composites
    Sekhar, M. Chandra
    Veerapratap, S.
    Song, J. I.
    Luo, N.
    Zhang, J.
    Rajulu, A. Varada
    Rao, K. Chowdoji
    MATERIALS LETTERS, 2012, 77 : 86 - 88
  • [35] Improving the Tensile Properties of Wet Spun Silk Fibers Using Rapid Bayesian Algorithm
    Yao, Ya
    Allardyce, Benjamin James
    Rajkhowa, Rangam
    Hegh, Dylan
    Sutti, Alessandra
    Subianto, Surya
    Gupta, Sunil Kumar
    Rana, Santu
    Greenhill, S.
    Venkatesh, Svetha
    Wang, Xungai
    Razal, Joselito M.
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2020, 6 (05) : 3197 - 3207
  • [36] Coated Conductors under Tensile Stress
    Antonevici, Anca
    Villaume, Alain
    Villard, Catherine
    Sulpice, Andre
    Maron, Pierre Brosse
    Bourgault, Daniel
    Porcar, Laureline
    7TH EUROPEAN CONFERENCE ON APPLIED SUPERCONDUCTIVITY (EUCAS'05), 2006, 43 : 195 - 198
  • [37] Molecular orientation in silk fibers studied using Raman microspectroscopy
    Rousseau, ME
    Paquin, MC
    Separovic, F
    Herberstein, ME
    Pézolet, P
    BIOPHYSICAL JOURNAL, 2004, 86 (01) : 321A - 321A
  • [38] Organic chromophores under tensile stress
    Röhrig, UF
    Troppmann, U
    Frank, I
    CHEMICAL PHYSICS, 2003, 289 (2-3) : 381 - 388
  • [39] Macromolecular structural response of Wender coal under tensile stress via molecular dynamics
    Yang, Yanhui
    Pan, Jienan
    Wang, Kai
    Hou, Quanlin
    FUEL, 2020, 265
  • [40] HDPE Reinforced With Glass Fibers: Rheology, Tensile Properties, Stress Relaxation, and Orientation of Fibers
    Saeed, U.
    Hussain, K.
    Rizvi, G.
    POLYMER COMPOSITES, 2014, 35 (11) : 2159 - 2169