The recognition of human movement using temporal templates

被引:1752
|
作者
Bobick, AF
Davis, JW
机构
[1] Georgia Tech Res Inst, Coll Comp, Atlanta, GA 30332 USA
[2] Ohio State Univ, Dept Comp & Informat Sci, Columbus, OH 43210 USA
关键词
motion recognition; computer vision;
D O I
10.1109/34.910878
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new view-based approach to the representation and recognition of human movement is presented. The basis of the representation is a temporal template-a static vector-image where the vector value at each point is a function of the motion properties at the corresponding spatial location in an image sequence. Using aerobics exercises as a test domain, we explore the representational power of a simple, two component version of the templates: The first value is a binary value indicating the presence of motion and the second value is a function of the recency of motion in a sequence. We then develop a recognition method matching temporal templates against stored instances of Views of known actions. The method automatically performs temporal segmentation, is invariant to linear changes in speed, and runs in real-time on standard platforms.
引用
收藏
页码:257 / 267
页数:11
相关论文
共 50 条
  • [41] RECOGNITION AND CORRELATION OF HUMAN MOVEMENT PATTERNS
    WHITING, WC
    ZERNICKE, RF
    MCLAUGHLIN, TM
    GREGOR, RJ
    JOURNAL OF BIOMECHANICS, 1980, 13 (02) : 193 - 193
  • [42] Sparse human movement representation and recognition
    Gkalelis, Nikolaos
    Tefas, Anastasios
    Pitas, Ioannis
    2008 IEEE 10TH WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, VOLS 1 AND 2, 2008, : 168 - +
  • [43] <bold>CELL RECOGNITION USING WAVELET TEMPLATES</bold>
    Bernal, Ariel J.
    Ferrando, Sebastian E.
    Bernal, Luis J.
    2008 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1-4, 2008, : 1164 - +
  • [44] Human interaction recognition using spatial-temporal salient feature
    Hu, Tao
    Zhu, Xinyan
    Wang, Shaohua
    Duan, Lian
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (20) : 28715 - 28735
  • [45] Human activity recognition using temporal convolutional neural network architecture
    Andrade-Ambriz, Yair A.
    Ledesma, Sergio
    Ibarra-Manzano, Mario-Alberto
    Oros-Flores, Marvella, I
    Almanza-Ojeda, Dora-Luz
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 191
  • [46] Human interaction recognition using spatial-temporal salient feature
    Tao Hu
    Xinyan Zhu
    Shaohua Wang
    Lian Duan
    Multimedia Tools and Applications, 2019, 78 : 28715 - 28735
  • [47] Human Action Recognition using Temporal-State Shape Contexts
    Hsiao, Pei-Chi
    Chen, Chu-Song
    Chang, Long-Wen
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 1251 - +
  • [48] Temporal Learning using Echo State Network for Human Activity Recognition
    Basterrech, Sebastian
    Ojha, Varun Kumar
    2016 THIRD EUROPEAN NETWORK INTELLIGENCE CONFERENCE (ENIC 2016), 2016, : 217 - 223
  • [49] Complex human activities recognition using interval temporal syntactic model
    Li-min Xia
    Fen Han
    Jun Wang
    Journal of Central South University, 2016, 23 : 2578 - 2586
  • [50] Human Interaction Recognition Using Improved Spatio-Temporal Features
    Sivarathinabala, M.
    Abirami, S.
    PROCEEDINGS OF 3RD INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING, NETWORKING AND INFORMATICS (ICACNI 2015), VOL 1, 2016, 43 : 191 - 199