Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion

被引:82
|
作者
Bodrova, Anna S. [1 ,2 ]
Chechkin, Aleksei V. [3 ,4 ,5 ]
Cherstvy, Andrey G. [4 ]
Safdari, Hadiseh [4 ,6 ]
Sokolov, Igor M. [1 ]
Metzler, Ralf [4 ]
机构
[1] Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany
[2] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia
[3] Kharkov Inst Phys & Technol, Akhiezer Inst Theoret Phys, UA-61108 Kharkov, Ukraine
[4] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany
[5] Univ Padua, Dept Phys & Astron, I-35122 Padua, Italy
[6] Shahid Beheshti Univ, Dept Phys, GC, Tehran 19839, Iran
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
关键词
SELF-DIFFUSION; KINETIC-THEORY; LEVY FLIGHTS; RANDOM-WALKS; MODELS; CYTOPLASM; DYNAMICS; NONERGODICITY; SUBDIFFUSION; EQUATIONS;
D O I
10.1038/srep30520
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
It is quite generally assumed that the overdamped Langevin equation provides a quantitative description of the dynamics of a classical Brownian particle in the long time limit. We establish and investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation with an explicit time dependence of the system temperature and thus the diffusion and damping coefficients. We show that for this underdamped scaled Brownian motion (UDSBM) the overdamped limit fails to describe the long time behaviour of the system and may practically even not exist at all for a certain range of the parameter values. Thus persistent inertial effects play a non-negligible role even at significantly long times. From this study a general questions on the applicability of the overdamped limit to describe the long time motion of an anomalously diffusing particle arises, with profound consequences for the relevance of overdamped anomalous diffusion models. We elucidate our results in view of analytical and simulations results for the anomalous diffusion of particles in free cooling granular gases.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Strong anomalous diffusion in two-state process with Levy walk and Brownian motion
    Wang, Xudong
    Chen, Yao
    Deng, Weihua
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [42] Brownian Motion in a Speckle Light Field: Tunable Anomalous Diffusion and Selective Optical Manipulation
    Giorgio Volpe
    Giovanni Volpe
    Sylvain Gigan
    Scientific Reports, 4
  • [43] BROWNIAN TYPE OF MOTION OF A RANDOMLY KICKED PARTICLE FAR FROM AND CLOSE TO THE DIFFUSION LIMIT
    BARKAI, E
    FLEUROV, V
    PHYSICAL REVIEW E, 1995, 52 (02): : 1558 - 1570
  • [44] Brownian motion limit of random walks in symmetric non-homogeneous media
    Marchetti, DHU
    da Silva, R
    BRAZILIAN JOURNAL OF PHYSICS, 1999, 29 (03) : 492 - 509
  • [45] LONG-RANGE CORRELATION-EFFECTS, GENERALIZED BROWNIAN-MOTION AND ANOMALOUS DIFFUSION
    WANG, KG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (11): : 3655 - 3661
  • [46] Anomalous diffusion and multifractional Brownian motion: simulating molecular crowding and physical obstacles in systems biology
    Marquez-Lago, T. T.
    Leier, A.
    Burrage, K.
    IET SYSTEMS BIOLOGY, 2012, 6 (04) : 134 - 142
  • [47] Anomalous diffusion due to hindering by mobile obstacles undergoing Brownian motion or Orstein-Ulhenbeck processes
    Berry, Hugues
    Chate, Hugues
    PHYSICAL REVIEW E, 2014, 89 (02):
  • [48] Central and non-central limit theorems for weighted power variations of fractional Brownian motion
    Nourdin, Ivan
    Nualart, David
    Tudor, Ciprian A.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2010, 46 (04): : 1055 - 1079
  • [49] Brownian non-Gaussian polymer diffusion and queuing theory in the mean-field limit
    Nampoothiri, Sankaran
    Orlandini, Enzo
    Seno, Flavio
    Baldovin, Fulvio
    NEW JOURNAL OF PHYSICS, 2022, 24 (02):
  • [50] Non-Normalizable Densities in Strong Anomalous Diffusion: Beyond the Central Limit Theorem
    Rebenshtok, Adi
    Denisov, Sergey
    Haenggi, Peter
    Barkai, Eli
    PHYSICAL REVIEW LETTERS, 2014, 112 (11)