Modification of phonon processes in nanostructured rare-earth-ion-doped crystals

被引:13
|
作者
Lutz, Thomas [1 ,2 ]
Veissier, Lucile [1 ,2 ]
Thiel, Charles W. [3 ]
Cone, Rufus L. [3 ]
Barclay, Paul E. [1 ,2 ]
Tittel, Wolfgang [1 ,2 ]
机构
[1] Univ Calgary, Inst Quantum Sci & Technol, Calgary, AB T2N 1N4, Canada
[2] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada
[3] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
SPIN-LATTICE-RELAXATION; WIDE-BAND; STABILIZATION; STORAGE; SOUND;
D O I
10.1103/PhysRevA.94.013801
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Nano-structuring impurity-doped crystals affects the phonon density of states and thereby modifies the atomic dynamics induced by interaction with phonons. We propose the use of nano-structured materials in the form of powders or phononic bandgap crystals to enable or improve persistent spectral hole burning and coherence for inhomogeneously broadened absorption lines in rare-earth-ion-doped crystals. This is crucial for applications such as ultra-precise radio-frequency spectrum analyzers and optical quantum memories. As an example, we discuss how phonon engineering can enable spectral hole burning in erbium-doped materials operating in the convenient telecommunication band and present simulations for density of states of nano-sized powders and phononic crystals for the case of Y2SiO5, a widely used material in current quantum memory research.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] High refractive index without absorption in a rare-earth-ion-doped optical fiber
    Zhiping Wang
    Benli Yu
    Applied Physics A, 2012, 109 : 725 - 729
  • [32] High refractive index without absorption in a rare-earth-ion-doped optical fiber
    Wang, Zhiping
    Yu, Benli
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2012, 109 (03): : 725 - 729
  • [33] Up-conversion process in the rare-earth-ion-doped lead silicate glasses
    Dantas, NO
    Qu, FY
    RARE-EARTH-DOPED MATERIALS AND DEVICES VI, 2002, 4645 : 130 - 134
  • [34] Memorized polarization-dependent light scattering in rare-earth-ion-doped glass
    Qiu, JR
    Kazansky, PG
    Si, J
    Miura, K
    Mitsuyu, T
    Hirao, K
    Gaeta, AL
    APPLIED PHYSICS LETTERS, 2000, 77 (13) : 1940 - 1942
  • [35] Transfer of optical vortices in a coherently-prepared rare-earth-ion-doped solid
    Liu, Shao-Hua
    Qu, Yan-Ji
    Chen, Yi
    Wei, Xiao-Gang
    Kang, Zhi-Hui
    Li, Ai-Jun
    Wang, Lei
    Gao, Jin-Yue
    Wang, Hai-Hua
    JOURNAL OF LUMINESCENCE, 2024, 275
  • [36] Thermal quenching of luminescence and isovalent trap model for rare-earth-ion-doped AlN
    Lozykowski, H. J.
    Jadwisienczak, W. M.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2007, 244 (06): : 2109 - 2126
  • [37] Rare-earth-ion-doped Al2O3 for integrated optical amplification
    Worhoff, K.
    Bradley, J. D. B.
    Agazzi, L.
    Pollnau, M.
    INTEGRATED OPTICS: DEVICES, MATERIALS, AND TECHNOLOGIES XIV, 2010, 7604
  • [38] Two-color upconversion in rare-earth-ion-doped ZrO2 nanocrystals
    Chen, G. Y.
    Zhang, Y. G.
    Somesfalean, G.
    Zhang, Z. G.
    Sun, Q.
    Wang, F. P.
    APPLIED PHYSICS LETTERS, 2006, 89 (16)
  • [39] Pulse propagation in rare-earth ion doped crystals
    Zumofen, G
    Graf, FR
    Renn, A
    Wild, UP
    JOURNAL OF LUMINESCENCE, 1999, 83-4 : 379 - 383
  • [40] Rare earth ion doped non linear laser crystals
    Jaque, D
    Romero, JJ
    Ramirez, MO
    García, JAS
    De Las Heras, C
    Bausá, LE
    Solé, JG
    RADIATION EFFECTS AND DEFECTS IN SOLIDS, 2003, 158 (1-6): : 231 - 239