Interaction mechanism of in-situ catalytic coal H2O-gasification over biochar catalysts for H2O-H2-tar reforming and active sites conversion

被引:26
|
作者
Zhang, Yu [1 ]
Shang, Qi [1 ]
Feng, Dongdong [1 ]
Sun, Hongliang [1 ]
Wang, Fuhua [1 ]
Hu, Zhichao [2 ]
Cheng, Zhenyu [1 ]
Zhou, Zijian [3 ]
Zhao, Yijun [1 ]
Sun, Shaozeng [1 ]
机构
[1] Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R China
[2] Zhejiang Univ, Coll Energy Engn, Hangzhou 310058, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, State Key Lab Coal Combust, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Biochar; Coal; Co-gasification; Tar reforming; Active sites; SUB-BITUMINOUS COAL; CARBON CONTENT; FIXED-BED; GASIFICATION; BIOMASS; PYROLYSIS; CHAR; LIGNITE; PERFORMANCE; REACTIVITY;
D O I
10.1016/j.fuproc.2022.107307
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The co-gasification of biomass and coal is a promising way to make H-2-rich synthesis gas, to better serve the carbon-neutrality development in China. Decoupling core processes of their thermal conversion, the in-situ catalytic co-gasification and co-pyrolysis of coal over biochar were carried out in a one-stage fluidized-bed/ fixed-bed reactor, with the analysis of interaction effect on gas-liquid-solid products by FTIR, XPS, SEM, TG, and electrochemistry methods. The results show that during co-gasification reaction, biochar and coal have a synergistic effect on the in-situ H2O-H-2-tar reforming, which is reflected in the competitive relationship of H2O between biochar and coal, as well as coal tar and steam. H2O preferentially undergoes gasification reaction with biochar, greatly enhances the H-2 yield (increased by 62.3%) and accelerates the active sites conversion. Biochar enhances the degree of graphitization (C-C) of coal char and increases the ratio of O-/N-groups to provide active sites. The AAEMs in biochar would migrate to the coal char surface, enhancing the gasification reactivity and energy storage characteristics of mixed char product, and promoting the reforming of heavy tar into small molecular substances. The interaction between biochar and coal is of great significance to the "carbon-hydrogen " polygeneration of co-gasification of coal and biomass.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] The UV/H2O2 process based on H2O2 in-situ generation for water disinfection
    Zhao, Qian
    Li, Nan
    Liao, Chengmei
    Tian, Lili
    An, Jingkun
    Wang, Xin
    JOURNAL OF HAZARDOUS MATERIALS LETTERS, 2021, 2
  • [22] Competition between H2O and CO2 for active sites during co-gasification of bituminous coal and pineapple sawdust in an atmosphere containing H2O, CO2, H2, and CO
    Farid, Massoud Massoudi
    Hwang, Jungho
    FUEL, 2017, 207 : 198 - 203
  • [23] The direct formation of H2O2 from H2 and O2 over palladium catalysts
    Lunsford, JH
    JOURNAL OF CATALYSIS, 2003, 216 (1-2) : 455 - 460
  • [24] Catalytic gasification of a Powder River Basin coal with CO2 and H2O mixtures
    ZhangFan
    FanMaohong
    HuangXin
    Argyle, Morris D.
    ZhangBo
    Towler, Brian
    ZhangYulong
    FUEL PROCESSING TECHNOLOGY, 2017, 161 : 145 - 154
  • [25] Studies on the catalytic mechanism of H-2-forming methylenetetrahydromethanopterin dehydrogenase: Para-ortho H-2 conversion rates in H2O and D2O
    Hartmann, GC
    Santamaria, E
    Fernandez, VM
    Thauer, RK
    JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 1996, 1 (05): : 446 - 450
  • [26] O-2-ADSORPTION AND (O-2-H-2)-TITRATION ON ELECTRON PLATINUM IN REFORMING CATALYSTS
    BELYI, AS
    KIRYANOV, DI
    SMOLIKOV, MD
    ZATOLOKINA, EV
    UDRAS, IE
    DUPLYAKIN, VK
    REACTION KINETICS AND CATALYSIS LETTERS, 1994, 53 (01): : 183 - 189
  • [27] COAL CONVERSION IN CO-H2O SYSTEMS
    NGUYEN, QC
    ROSS, DS
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1981, 181 (MAR): : 40 - FUEL
  • [28] Effects of H2O on Coal Char Conversion
    Yan B.
    Niu Y.
    Liu S.
    Lei Y.
    Hui S.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2021, 41 (15): : 5242 - 5249
  • [29] On the Reaction Mechanism of Direct H2O2 Formation over Pd Catalysts
    Chen, Lin
    Medlin, J. Will
    Gronbeck, Henrik
    ACS CATALYSIS, 2021, 11 (05): : 2735 - 2745
  • [30] Energy and exergy analyses of coal gasification with supercritical water and O2-H2O
    Chen, Zhewen
    Gao, Lin
    Han, Wei
    Zhang, Longyan
    APPLIED THERMAL ENGINEERING, 2019, 148 : 57 - 63