Saliency-based initialisation of Gaussian mixture models for fully-automatic object segmentation

被引:5
|
作者
Kim, G. [1 ]
Yang, S. [1 ]
Sim, J. -Y. [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Sch Elect & Comp Engn, Ulsan, South Korea
关键词
D O I
10.1049/el.2017.3877
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The conventional object segmentation methods often degrade their performance due to the requirement of user interaction and/or the incomplete colour appearance models. In this Letter, the authors propose a novel design method of a colour appearance model for accurate and fully-automatic object segmentation by using saliency maps. The authors initialise the Gaussian mixture models (GMMs) to describe the colour appearance of the foreground objects and the background, respectively, where the mean vectors, covariance matrices, and mixing coefficients are updated adaptively such that more salient pixels have larger weights to update the GMM for the foreground objects while less salient pixels have larger weights to update the GMM for the background, respectively. Experiments are performed on MSRC, iCoseg, and PASCAL datasets and we show that the proposed method outperforms the existing methods quantitatively and qualitatively.
引用
收藏
页码:1648 / 1649
页数:2
相关论文
共 50 条
  • [31] Automatic salient object segmentation using saliency map and color segmentation
    Sung-ho Han
    Gye-dong Jung
    Sangh-yuk Lee
    Yeong-pyo Hong
    Sang-hun Lee
    [J]. Journal of Central South University, 2013, 20 : 2407 - 2413
  • [32] Automatic salient object segmentation using saliency map and color segmentation
    HAN Sung-ho
    JUNG Gye-dong
    LEE Sangh-yuk
    HONG Yeong-pyo
    LEE Sang-hun
    [J]. Journal of Central South University, 2013, 20 (09) : 2407 - 2413
  • [33] Automatic salient object segmentation using saliency map and color segmentation
    Han, Sung-ho
    Jung, Gye-dong
    Lee, Sangh-yuk
    Hong, Yeong-pyo
    Lee, Sang-hun
    [J]. JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2013, 20 (09) : 2407 - 2413
  • [34] Fully-automatic raw G-band chromosome image segmentation
    Altinsoy, Emrecan
    Yang, Jie
    Yilmaz, Can
    [J]. IET IMAGE PROCESSING, 2020, 14 (09) : 1920 - 1928
  • [35] Multimodal Saliency-based Attention for Object-based Scene Analysis
    Schauerte, Boris
    Kuehn, Benjamin
    Kroschel, Kristian
    Stiefelhagen, Rainer
    [J]. 2011 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2011, : 1173 - 1179
  • [36] Saliency-based segmentation of dermoscopic images using colour information
    Ramella, Giuliana
    [J]. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2022, 10 (02): : 172 - 186
  • [37] Saliency-based color image segmentation in foreign fiber detection
    Yang, Wenzhu
    Li, Daoliang
    Wang, Sile
    Lu, Sukui
    Yang, Jingwei
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2013, 58 (3-4) : 846 - 852
  • [38] COLOUR SALIENCY-BASED PARAMETER OPTIMISATION FOR ADAPTIVE COLOUR SEGMENTATION
    Ilea, Dana E.
    Whelan, Paul F.
    [J]. 2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 973 - 976
  • [39] Saliency-based keypoint selection for fast object detection and matching
    Buoncompagni, Simone
    Maio, Dario
    Maltoni, Davide
    Papi, Serena
    [J]. PATTERN RECOGNITION LETTERS, 2015, 62 : 32 - 40
  • [40] Object Segmentation Based on Gaussian Mixture Model and Conditional Random Fields
    Qi, Yali
    Zhang, Guoshan
    Qi, Yali
    Li, Yeli
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2016, : 900 - 904