Estimation of sensitivity coefficients of nonlinear model input parameters which have a multinormal distribution

被引:24
|
作者
Fang, SF
Gertner, GZ
Anderson, AA
机构
[1] Univ Illinois, Dept Stat, Dept Nat Resources & Environm Sci, Urbana, IL 61801 USA
[2] USA, Construct Engn Res Lab, Champaign, IL 61824 USA
[3] Univ Illinois, Dept Nat Resources & Environm Sci, Urbana, IL 61801 USA
关键词
correlation; multi-expression; multinormal distribution; sensitivity analysis; sequential random sampling; Taylor series;
D O I
10.1016/S0010-4655(03)00488-0
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper considers the estimation of sensitivity coefficients based on sequential random sampling when the input parameters of a nonlinear model are correlated and have a multinormal distribution. Due to the difficulties in generating sequential random samples for correlated model inputs and the properties of response surface models, sampling-based (simulation- and experiment-based) methods could not be used to estimate sensitivity coefficients of correlated model inputs. For this reason, an algorithm based on multi-expressions of multinormal distribution has been developed and used to generate sequential random samples for estimation of sensitivity coefficients. The multi-expression approach has very high accuracy in generating multinormal random samples. The estimated sensitivity coefficients based on sequential random samples changed when sample size changed. Most estimates converged with a sample size of 5000. Model structure mainly determined the speed of convergence. Both correlation among input parameters and model structure influenced the estimates of sensitivity coefficients. The sensitivity coefficients were compared to global partial derivatives that were computed using numerical integration. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:9 / 16
页数:8
相关论文
共 50 条
  • [41] Riparian ecosystem management model: Sensitivity to soil, vegetation, and weather input parameters
    Kim, Ik-Jae
    Hutchinson, Stacy L.
    Hutchinson, J. M. Shawn
    Young, C. Bryan
    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2007, 43 (05): : 1171 - 1182
  • [42] Investigations of the sensitivity of a coronal mass ejection model (ENLIL) to solar input parameters
    Falkenberg, T. V.
    Vrsnak, B.
    Taktakishvili, A.
    Odstrcil, D.
    MacNeice, P.
    Hesse, M.
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2010, 8
  • [43] Sensitivity of a quantitative soil-landscape model to the precision of the topographical input parameters
    Chapiot, V
    Walter, C
    Curmi, P
    SPATIAL ACCURACY ASSESSMENT: LAND INFORMATION UNCERTAINTY IN NATURAL RESOURCES, 1999, : 89 - 95
  • [44] Sensitivity study of the Microdosimetric Kinetic Model input parameters for carbon ion radiotherapy
    Dahle, T. J.
    Magro, G.
    Stokkevag, C. H.
    Ytre-Hauge, K. S.
    Mairani, A.
    RADIOTHERAPY AND ONCOLOGY, 2018, 127 : S1097 - S1098
  • [45] Efficient screening of climate model sensitivity to a large number of perturbed input parameters
    Covey, Curt
    Lucas, Donald D.
    Tannahill, John
    Garaizar, Xabier
    Klein, Richard
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2013, 5 (03) : 598 - 610
  • [46] THE SENSITIVITY TO INPUT PARAMETERS OF ATMOSPHERIC CONCENTRATIONS SIMULATED BY A REGIONAL CHEMICAL-MODEL
    BROST, RA
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1988, 93 (D3): : 2371 - 2387
  • [47] ESTIMATION OF PARAMETERS OF A WEIBULL-TYPE NONLINEAR REGRESSION MODEL
    Singh, Trijya
    ADVANCES AND APPLICATIONS IN STATISTICS, 2016, 49 (06) : 409 - 416
  • [48] Nonlinear surveying model parameters estimation based on homotopy arithmetic
    Research Center for Hazard Monitoring and Prevention, Wuhan University, 129 Luoyu Road, Wuhan 430079, China
    不详
    Wuhan Daxue Xuebao Xinxi Kexue Ban, 2008, 9 (930-933):
  • [49] Estimation of growth parameters using a nonlinear mixed Gompertz model
    Wang, Z
    Zuidhof, MJ
    POULTRY SCIENCE, 2004, 83 (06) : 847 - 852
  • [50] An Evolutionary Firefly Algorithm for the Estimation of Nonlinear Biological Model Parameters
    Abdullah, Afnizanfaizal
    Deris, Safaai
    Anwar, Sohail
    Arjunan, Satya N. V.
    PLOS ONE, 2013, 8 (03):