Flying elephants: a general method for solving non-differentiable problems

被引:9
|
作者
Xavier, Adilson Elias [1 ]
Xavier, Vinicius Layter [1 ]
机构
[1] Univ Fed Rio de Janeiro, Rio De Janeiro, Brazil
关键词
Non-differentiable optimization; Smoothing; Distance geometry; Covering; Clustering; Fermat-Weber problem; Hub location problem;
D O I
10.1007/s10732-014-9268-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Flying Elephants (FE) is a generalization and a new interpretation of the Hyperbolic Smoothing approach. The article introduces the fundamental smoothing procedures. It contains a general overview of successful applications of the approach for solving a select set of five important problems, namely: distance geometry, covering, clustering, Fermat-Weber and hub location. For each problem the original non-smooth formulation and the succedaneous completely differentiable one are presented. Computational experiments for all related problems obtained results that exhibited a high level of performance according to all criteria: consistency, robustness and efficiency. For each problem some results to illustrate the performance of FE are also presented.
引用
收藏
页码:649 / 664
页数:16
相关论文
共 50 条
  • [21] Convergence of Steffensen's method for non-differentiable operators
    Argyros, I. K.
    Hernandez-Veron, M. A.
    Rubio, M. J.
    NUMERICAL ALGORITHMS, 2017, 75 (01) : 229 - 244
  • [22] Convergence of Steffensen’s method for non-differentiable operators
    I. K. Argyros
    M. A. Hernández-Verón
    M. J. Rubio
    Numerical Algorithms, 2017, 75 : 229 - 244
  • [23] Non-differentiable optimisation for solution of large scale planning problems
    Tahmassebi, T
    COMPUTERS & CHEMICAL ENGINEERING, 1999, 23 : S503 - S506
  • [24] Non-Differentiable Function Tracking
    Kamal, Shyam
    Yu, Xinghuo
    Sharma, Rahul Kumar
    Mishra, Jyoti
    Ghosh, Sandip
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2019, 66 (11) : 1835 - 1839
  • [25] Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities
    Bonanno, Gabriele
    Candito, Pasquale
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (12) : 3031 - 3059
  • [26] Non-Differentiable Optmization Tasks and Problems of Multiobjective Decison.
    Beer, Klaus
    Wissenschaftliche Zeitschrift - Technische Hochschule Ilmenau, 1980, 26 (06): : 43 - 50
  • [27] Non-Differentiable Optimal Control Problems of Retarded Parabolic Systems
    Kowalewski, Adam
    2015 20TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2015, : 200 - 203
  • [28] OPTIMAL-CONTROL PROBLEMS WITH NON-DIFFERENTIABLE ISOPERIMETRIC CONSTRAINTS
    SUDHAKAR, DP
    EYMAN, ED
    INTERNATIONAL JOURNAL OF CONTROL, 1977, 25 (01) : 129 - 152
  • [29] ON WEIERSTRASS NON-DIFFERENTIABLE FUNCTION
    HATA, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 307 (03): : 119 - 123
  • [30] Renormalisation of non-differentiable potentials
    J. Alexandre
    N. Defenu
    G. Grigolia
    I. G. Márián
    D. Mdinaradze
    A. Trombettoni
    Y. Turovtsi-Shiutev
    I. Nándori
    Journal of High Energy Physics, 2022