Oxidation of nanoscale zero-valent iron under sufficient and limited dissolved oxygen: Influences on aggregation behaviors

被引:35
|
作者
Jiang, Danlie [1 ]
Hu, Xialin [1 ,2 ]
Wang, Rui [1 ]
Yin, Daqiang [1 ,2 ]
机构
[1] Tongji Univ, Coll Environm Sci & Engn, Minist Educ, Key Lab Yangtze River Water Environm, Shanghai 200092, Peoples R China
[2] Tongji Univ, Coll Environm Sci & Engn, Minist Educ, State Key Lab Pollut Control & Resources Reuse, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金; 对外科技合作项目(国际科技项目);
关键词
Nanoscale zero-valent iron; Dissolved oxygen; Magnetization; Aggregation behavior; Extended DLVO theory; TITANIUM-DIOXIDE NANOPARTICLES; MODIFIED FE-0 NANOPARTICLES; ZEROVALENT IRON; WASTE-WATER; NZVI; BIOAVAILABILITY; STABILIZATION; SEDIMENTATION; REMEDIATION; PARTICLES;
D O I
10.1016/j.chemosphere.2014.09.095
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Oxidations of nanoscale zero-valent iron (nZVI) under aerobic (dissolved oxygen approximate to, 8 mg L-1) and anaerobic (dissolved oxygen <3 mg L-1) conditions were simulated, and their influences on aggregation behaviors of nZVI were investigated. The two oxidation products were noted as HO-nZVI (nZVI oxidized in highly oxygenated water) and LO-nZVI (nZVI oxidized in lowly oxygenated water) respectively. The metallic iron of the oxidized nZVI was almost exhausted (Fe-0 approximate to 8 +/- 5%), thus magnetization mainly depended on magnetite content. Since sufficient dissolved oxygen led to the much less magnetite (similar to 15%) in HO-nZVI than that in LO-nZVI (>90%), HO-nZVI was far less magnetic (M-s = 88 kA m(-1)) than LO-nZVI (M-s =365 kA m(-1)). Consequently, HO-nZVI formed small agglomerates (228 +/- 10 nm), while LO-nZVI tended to form chain-like aggregations (>1 mu m) which precipitated rapidly. Based on the EDLVO theory, we suggested that dissolved oxygen level determined aggregation morphologies by controlling the degree of oxidation and the magnitude of magnetization. Then the chain-like alignment of LO-nZVI would promote further aggregation, but the agglomerate morphology of HO-nZVI would eliminate magnetic forces and inhibit the aggregation while HO-nZVI remained magnetic. Our results indicated the fine colloidal stability of HO-nZVI, which might lead to the great mobility in the environment. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:8 / 13
页数:6
相关论文
共 50 条
  • [21] Mechanism of uranium uptake by nanoscale zero-valent iron
    Tsarev, Sergey
    Crane, Richard A.
    Waite, David T.
    Collins, Richard N.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [22] Degradation of chlorinated phenols by nanoscale zero-valent iron
    Cheng R.
    Wang J.
    Zhang W.
    Frontiers of Environmental Science & Engineering in China, 2008, 2 (1): : 103 - 108
  • [23] Transport of nanoscale zero-valent iron in the presence of rhamnolipid
    Abbasi, Alireza
    Qi, Lin
    Chen, Gang
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 927
  • [24] The colorful chemistry of nanoscale zero-valent iron(nZVI)
    Yilong Hua
    Jing Liu
    Tianhang Gu
    Wei Wang
    Wei-xian Zhang
    Journal of Environmental Sciences, 2018, (05) : 1 - 3
  • [25] Modeling arsenic removal by nanoscale zero-valent iron
    Umma S. Rashid
    Bernhardt Saini-Eidukat
    Achintya N. Bezbaruah
    Environmental Monitoring and Assessment, 2020, 192
  • [26] Stability of green tea nanoscale zero-valent iron
    Suponik, Tomasz
    Lemanowicz, Marcin
    Wrona, Pawel
    MINERAL ENGINEERING CONFERENCE (MEC2016), 2016, 8
  • [27] The colorful chemistry of nanoscale zero-valent iron (nZVI)
    Hua, Yilong
    Liu, Jing
    Gu, Tianhang
    Wang, Wei
    Zhang, Wei-xian
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2018, 67 : 1 - 3
  • [28] The sorption of metal ions on nanoscale zero-valent iron
    Suponik, Tomasz
    Popczyk, Marcin
    Pierzyna, Piotr
    MINERAL ENGINEERING CONFERENCE (MEC2017), 2017, 18
  • [29] Modeling arsenic removal by nanoscale zero-valent iron
    Rashid, Umma S.
    Saini-Eidukat, Bernhardt
    Bezbaruah, Achintya N.
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2020, 192 (02)
  • [30] Nanoscale zero-valent iron flakes for groundwater treatment
    R. Köber
    H. Hollert
    G. Hornbruch
    M. Jekel
    A. Kamptner
    N. Klaas
    H. Maes
    K.-M. Mangold
    E. Martac
    A. Matheis
    H. Paar
    A. Schäffer
    H. Schell
    A. Schiwy
    K. R. Schmidt
    T. J. Strutz
    S. Thümmler
    A. Tiehm
    J. Braun
    Environmental Earth Sciences, 2014, 72