A New Taylor Collocation Method for Nonlinear Fredholm-Volterra Integro-Differential Equations

被引:7
|
作者
Bulbul, Berna [1 ]
Gulsu, Mustafa [1 ]
Sezer, Mehmet [1 ]
机构
[1] Mugla Univ, Fac Sci, Dept Math, TR-4800 Mugla, Turkey
关键词
nonlinear integro-differential equations; Taylor polynomials and series; collocation method; APPROXIMATE SOLUTION; POLYNOMIAL SOLUTION; INTEGRAL-EQUATIONS; NUMERICAL-SOLUTION; SYSTEM;
D O I
10.1002/num.20470
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this article is to present an efficient numerical procedure for solving nonlinear integro-differential equations. Our method depends mainly on a Taylor expansion approach. This method transforms the integro-differential equation and the given conditions into the matrix equation which corresponds to a system of nonlinear algebraic equations with unkown Taylor coefficients. The reliability and efficiency of the proposed scheme are demonstrated by some numerical experiments and performed on the computer program written in Maple10. (C) 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 26: 1006-1020,2010
引用
收藏
页码:1006 / 1020
页数:15
相关论文
共 50 条
  • [41] A Chebyshev Polynomial Approach for High-Order Linear Fredholm-Volterra Integro-Differential Equations
    Yuksel, Gamze
    Gulsu, Mustafa
    Sezer, Mehmet
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2012, 25 (02): : 393 - 401
  • [42] On the Wavelet Collocation Method for Solving Fractional Fredholm Integro-Differential Equations
    Bin Jebreen, Haifa
    Dassios, Ioannis
    MATHEMATICS, 2022, 10 (08)
  • [43] SPECTRAL-COLLOCATION METHOD FOR FRACTIONAL FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
    Yang, Yin
    Chen, Yanping
    Huang, Yunqing
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (01) : 203 - 224
  • [44] Improvement of a Sinc-collocation Method for Fredholm Integro-differential Equations
    Okayama, Tomoaki
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [45] A new efficient method using Fibonacci polynomials for solving of first-order fuzzy Fredholm-Volterra integro-differential equations
    Seifi, A.
    Lotfi, T.
    Allahviranloo, T.
    SOFT COMPUTING, 2019, 23 (19) : 9777 - 9791
  • [46] A Sinc-Collocation method for the linear Fredholm integro-differential equations
    Mohsen, Adel
    El-Gamel, Mohamed
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2007, 58 (03): : 380 - 390
  • [47] Spectral collocation method for weakly singular Volterra integro-differential equations
    Gu, Zhendong
    APPLIED NUMERICAL MATHEMATICS, 2019, 143 : 263 - 275
  • [48] Laplace discrete decomposition method for solving nonlinear Volterra-Fredholm integro-differential equations
    Dawood, Lafta A.
    Hamoud, Ahmed A.
    Mohammed, Nedal M.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2020, 21 (02): : 158 - 163
  • [49] Boubaker Matrix Polynomials and Nonlinear Volterra-Fredholm Integro-differential Equations
    Mohsen Riahi Beni
    Iranian Journal of Science and Technology, Transactions A: Science, 2022, 46 : 547 - 561
  • [50] Boubaker Matrix Polynomials and Nonlinear Volterra-Fredholm Integro-differential Equations
    Beni, Mohsen Riahi
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2022, 46 (02): : 547 - 561