Asymptotic Behavior in a Laminated Beams Due Interfacial Slip with a Boundary Dissipation of Fractional Derivative Type

被引:12
|
作者
Maryati, Tita [1 ]
Munoz Rivera, Jaime [2 ,3 ]
Poblete, Veronica [4 ]
Vera, Octavio [2 ]
机构
[1] Islamic State Univ UIN, Math Educ Dept, South Tangerang, Indonesia
[2] Univ Bio Bio, Dept Matemat, Concepcion, Chile
[3] LNCC Petropolis, Petropolis, RJ, Brazil
[4] Univ Chile, Dept Matemat, Santiago, Chile
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2021年 / 84卷 / 01期
关键词
Thermoelastic structure; Exponential stability; Polynomial stability; Laminated beam; Interfacial slip; Semigroup theory; Fractional derivative; STABILITY;
D O I
10.1007/s00245-019-09639-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a laminated beams due interfacial slip with control boundary conditions of fractional derivative type. We show the existence and uniqueness of solutions. Furthermore, concerning the asymptotic behavior we show the lack of exponential stability and the polynomial decay rate of the corresponding semigroup by using the classic theorem of Borichev and Tomilov.
引用
收藏
页码:85 / 102
页数:18
相关论文
共 50 条
  • [21] Asymptotic behavior of solutions to a boundary value problem for a nonlinear equation with a fractional derivative
    Kaikina, E. I.
    Naumkin, P. I.
    Shishmarev, I. A.
    DOKLADY MATHEMATICS, 2008, 78 (01) : 485 - 487
  • [22] Asymptotic behavior of solutions to a boundary value problem for a nonlinear equation with a fractional derivative
    E. I. Kaikina
    P. I. Naumkin
    I. A. Shishmarev
    Doklady Mathematics, 2008, 78 : 485 - 487
  • [23] Energy Decay of Solutions to a Wave Equation with a Dynamic Boundary Dissipation of Fractional Derivative Type
    Benaissa, Abbes
    Benkhedda, Hanane
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2018, 37 (03): : 315 - 339
  • [24] Polynomial stability of a piezoelectric beam with magnetic effect and a boundary dissipation of the fractional derivative type
    Poblete, Veronica
    Toledo, Fernando
    Vera, Octavio
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2023, 66 (01) : 23 - 53
  • [25] Well-posedness and asymptotic behavior of Timoshenko beam system with dynamic boundary dissipative feedback of fractional derivative type
    Benaissa, Abbes
    Benazzouz, Sohbi
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (04):
  • [26] Well-posedness and asymptotic behavior of Timoshenko beam system with dynamic boundary dissipative feedback of fractional derivative type
    Abbes Benaissa
    Sohbi Benazzouz
    Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [27] TIMOSHENKO SYSTEM WITH INTERNAL DISSIPATION OF FRACTIONAL DERIVATIVE TYPE
    de Jesus, Rafael Oliveira
    Raposo, Carlos Alberto
    Ribeiro, Joilson Oliveira
    Villagran, Octavio Vera
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2025, 15 (02): : 1146 - 1169
  • [28] Asymptotic behavior of laminated beams with Kelvin-Voigt damping
    Victor R. Cabanillas
    Teófanes Quispe Méndez
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2025, 71 (1)
  • [29] WELL-POSEDENESS AND ENERGY DECAY OF SOLUTIONS TO A BRESSE SYSTEM WITH A BOUNDARY DISSIPATION OF FRACTIONAL DERIVATIVE TYPE
    Benaissa, Abbes
    Kasmi, Abderrahmane
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (10): : 4361 - 4395
  • [30] Energy Dissipation Due to Interfacial Slip in Nanocomposites Reinforced with Aligned Carbon Nanotubes
    Gardea, Frank
    Glaz, Bryan
    Riddick, Jaret
    Lagoudas, Dimitris C.
    Naraghi, Mohammad
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (18) : 9725 - 9735