Adaptive Radiotherapy for Lung Cancer

被引:191
|
作者
Sonke, Jan-Jakob [1 ]
Belderbos, Jose [1 ]
机构
[1] Antoni Van Leeuwenhoek Hosp, Netherlands Canc Inst, Dept Radiat Oncol, NL-1066 CX Amsterdam, Netherlands
关键词
BEAM COMPUTED-TOMOGRAPHY; 3-DIMENSIONAL CONFORMAL RADIOTHERAPY; INTENSITY-MODULATED RADIOTHERAPY; POSITRON-EMISSION-TOMOGRAPHY; STEREOTACTIC BODY RADIOTHERAPY; TARGET VOLUME GENERATION; SET-UP ERRORS; RADIATION-THERAPY; DOSE-ESCALATION; RESPIRATORY MOTION;
D O I
10.1016/j.semradonc.2009.11.003
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Lung cancer radiation therapy (RT) is associated with complex geometrical uncertainties, such as respiratory motion, differential baseline shifts between primary tumor and involved lymph nodes, and anatomical changes due to treatment response. Generous safety margins required to account for these uncertainties limit the potential of dose escalation to improve treatment outcome. Four dimensional inverse planning incorporating pretreatment patient-specific respiratory motion information into the treatment plan already improves treatment plan quality. More importantly, repetitive imaging during treatment quantifies patient-specific intrafraction, interfraction, and progressive geometrical variations. These patient-specific parameters subsequently can drive adaptive plan modification correcting for systematic errors while incorporating random errors. Adaptive RT therefore has the potential to considerably improve the accuracy of RT, reducing the exposure of organs at risk, facilitating safe dose escalation, and improving local control as well as overall survival. © 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:94 / 106
页数:13
相关论文
共 50 条
  • [21] RADIOTHERAPY IN LUNG CANCER
    Vinod, Shalini K.
    Ball, David L.
    CANCER FORUM, 2013, 37 (02) : 153 - 157
  • [22] RADIOTHERAPY FOR LUNG CANCER
    不详
    LANCET, 1955, 2 (NOV5): : 963 - 963
  • [23] Reduction of the acute pulmonary toxicity with a VMAT adaptive radiotherapy in lung cancer patients
    Bourbonne, V.
    Lucia, F.
    Jaouen, V.
    Bert, J.
    Rehn, M.
    Pradier, O.
    Visvikis, D.
    Schick, U.
    RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S1071 - S1071
  • [24] Deep learning driven predictive treatment planning for adaptive radiotherapy of lung cancer
    Lee, Donghoon
    Hu, Yu-chi
    Kuo, Licheng
    Alam, Sadegh
    Yorke, Ellen
    Li, Anyi
    Rimner, Andreas
    Zhang, Pengpeng
    RADIOTHERAPY AND ONCOLOGY, 2022, 169 : 57 - 63
  • [25] Adaptive radiotherapy based on integrated transit planar dosimetry for lung cancer patients
    Persoon, L. C. G. G.
    Sanizadeh, A.
    De Ruiter, B.
    Nijsten, S.
    Verhaegen, F.
    Troost, E. G. C.
    RADIOTHERAPY AND ONCOLOGY, 2015, 115 : S492 - S493
  • [26] Adaptive radiotherapy reduces pneumonitis without increasing the risk of failure in lung cancer
    Khalil, A. A.
    Knap, M. M.
    Petersen, M. T.
    Kandi, M.
    Schmidt, H. H.
    Moller, D. S.
    Hoffman, L.
    RADIOTHERAPY AND ONCOLOGY, 2017, 123 : S70 - S70
  • [27] Breathing variation during thoracic radiation: Implications for adaptive radiotherapy of lung cancer
    Kestin, L
    Vargas, C
    Hugo, G
    Liang, J
    Letourneau, D
    Wong, J
    Yan, D
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2004, 60 (01): : S610 - S610
  • [28] Role of Adaptive Radiotherapy during Concomitant Chemoradiotherapy for Small Cell Lung Cancer
    Yavuz, A. A.
    Ozdemir, B. S.
    Dundar, E.
    Pehlivan, B.
    Karakus, I.
    Tuncel, N.
    Yavuz, M. N.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2010, 78 (03): : S510 - S510
  • [29] Workflow optimization of image-guided adaptive radiotherapy in lung cancer patients
    Hattu, D.
    Mannens, J.
    Van Elmpt, W.
    De Ruysscher, D.
    Ollers, M.
    RADIOTHERAPY AND ONCOLOGY, 2018, 127 : S161 - S161
  • [30] Dosimetric Study of the Deformable Image Registration based Lung Cancer Adaptive Radiotherapy
    Wang, Linjing
    Zhang, Shuxu
    Yuan, Kehong
    Zhou, Lu
    Wang, Ruihao
    2015 8TH INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI), 2015, : 402 - 406