Measurement back action and spin noise spectroscopy in a charged cavity QED device in the strong coupling regime

被引:12
|
作者
Smirnov, D. S. [1 ]
Reznychenko, B. [2 ]
AuffSves, A. [2 ]
Lanco, L. [3 ,4 ]
机构
[1] Ioffe Inst, St Petersburg 194021, Russia
[2] Univ Grenoble Alpes, CNRS, Grenoble INP, Inst Neel, F-38000 Grenoble, France
[3] Univ Paris Saclay, Univ Paris Sud, CNRS, Ctr Nanosci & Nanotechnol,Marcoussis C2N, F-91460 Marcoussis, France
[4] Univ Paris Diderot, Sorbonne Paris Cite, F-75013 Paris, France
基金
俄罗斯基础研究基金会;
关键词
QUANTUM-DOT SPIN; SINGLE-ELECTRON SPIN; HOLE SPIN; ENTANGLEMENT; DYNAMICS;
D O I
10.1103/PhysRevB.96.165308
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study theoretically the spin-induced and photon-induced fluctuations of optical signals from a singly-charged quantum dot-microcavity structure. We identify the respective contributions of the photon-polariton interactions, in the strong light-matter coupling regime, and of the quantum back action induced by photon detection on the spin system. Strong spin projection by a single photon is shown to be achievable, allowing the initialization and measurement of a fully-polarized Larmor precession. The spectrum of second-order correlations is deduced, displaying information on both spin and quantum dot-cavity dynamics. The presented theory thus bridges the gap between the fields of spin noise spectroscopy and quantum optics.
引用
收藏
页数:11
相关论文
共 17 条
  • [1] Nonlinear spectroscopy in the strong-coupling regime of cavity QED
    Thompson, RJ
    Turchette, QA
    Carnal, O
    Kimble, HJ
    PHYSICAL REVIEW A, 1998, 57 (04): : 3084 - 3104
  • [2] Protecting a spin ensemble against decoherence in the strong-coupling regime of cavity QED
    Vienna Center for Quantum Science and Technology, Atominstitut, Vienna University of Technology, Stadionallee 2, Vienna
    1020, Austria
    不详
    1040, Austria
    不详
    1040, Austria
    不详
    1030, Austria
    Nat. Phys., 10 (720-724):
  • [3] Protecting a spin ensemble against decoherence in the strong-coupling regime of cavity QED
    Putz, S.
    Krimer, D. O.
    Amsuess, R.
    Valookaran, A.
    Noebauer, T.
    Schmiedmayer, J.
    Rotter, S.
    Majer, J.
    NATURE PHYSICS, 2014, 10 (10) : 720 - 724
  • [4] Protecting a spin ensemble against decoherence in the strong-coupling regime of cavity QED
    S. Putz
    D. O. Krimer
    R. Amsüss
    A. Valookaran
    T. Nöbauer
    J. Schmiedmayer
    S. Rotter
    J. Majer
    Nature Physics, 2014, 10 : 720 - 724
  • [5] A composite cavity QED system deepening the strong coupling regime
    Liu, Yong-Chun
    Gong, Qihuang
    Xiao, Yun-Feng
    2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [6] Fabrication of a centimeter-long cavity on nanofibe for strong-coupling regime of cavity QED
    Keloth, Jameesh
    Nayak, K. P.
    Wang, Jie
    Hakuta, K.
    30TH ANNUAL CONFERENCE OF THE IEEE PHOTONICS SOCIETY (IPC), 2017, : 465 - 466
  • [7] Cavity Quantum Acoustic Device in the Multimode Strong Coupling Regime
    Moores, Bradley A.
    Sletten, Lucas R.
    Viennot, Jeremie J.
    Lehnert, K. W.
    PHYSICAL REVIEW LETTERS, 2018, 120 (22)
  • [8] A charge-tunable quantum dot deep in the strong coupling regime of cavity QED
    Najer, Daniel
    Sollner, Immo
    Loebl, Matthias C.
    Riedel, Daniel
    Petrak, Benjamin
    Starosielec, Sebastian
    Dolique, Vincent
    Valentin, Sascha R.
    Schott, Ruediger
    Wieck, Andreas D.
    Ludwig, Arne
    Warburton, Richard J.
    2018 IEEE PHOTONICS SOCIETY SUMMER TOPICAL MEETING SERIES (SUM), 2018, : 169 - 170
  • [9] Spin Noise in Quantum Dot Microcavities in Strong Coupling Regime
    Smirnov, D. S.
    Reznychenko, B.
    Auffeves, A.
    Lanco, L.
    2017 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS), 2017, : 2170 - 2172
  • [10] Quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime
    Cui, GQ
    Raymer, MG
    OPTICS EXPRESS, 2005, 13 (24): : 9660 - 9665