Modelling anomalous diffusion in semi-infinite disordered systems and porous media

被引:17
|
作者
Metzler, Ralf [1 ,2 ]
Rajyaguru, Ashish [3 ]
Berkowitz, Brian [4 ]
机构
[1] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany
[2] Asia Pacific Ctr Theoret Phys, Pohang 37673, South Korea
[3] Paul Scherrer Inst, CH-5232 Villigen, Switzerland
[4] Weizmann Inst Sci, Dept Earth & Planetary Sci, IL-7610001 Rehovot, Israel
来源
NEW JOURNAL OF PHYSICS | 2022年 / 24卷 / 12期
关键词
diffusion; anomalous diffusion; breakthrough curves; constant boundary concentration; FRACTIONAL FICKS LAW; HETEROGENEOUS MEDIA; SINGLE MOLECULES; RANDOM-WALKS; TRANSPORT; EQUATIONS; MOTION; COEFFICIENTS;
D O I
10.1088/1367-2630/aca70c
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For an effectively one-dimensional, semi-infinite disordered system connected to a reservoir of tracer particles kept at constant concentration, we provide the dynamics of the concentration profile. Technically, we start with the Montroll-Weiss equation of a continuous time random walk with a scale-free waiting time density. From this we pass to a formulation in terms of the fractional diffusion equation for the concentration profile C(x, t) in a semi-infinite space for the boundary condition C(0, t) = C-0, using a subordination approach. From this we deduce the tracer flux and the so-called breakthrough curve (BTC) at a given distance from the tracer source. In particular, BTCs are routinely measured in geophysical contexts but are also of interest in single-particle tracking experiments. For the "residual' BTCs, given by 1- P(x, t), we demonstrate a long-time power-law behaviour that can be compared conveniently to experimental measurements. For completeness we also derive expressions for the moments in this constant-concentration boundary condition.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] EDGE EFFECTS IN SEMI-INFINITE DIFFUSION AT MICROELECTRODES
    HEPEL, T
    OSTERYOUNG, J
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1982, 129 (03) : C120 - C121
  • [32] Diffusion of curvature on a sheared semi-infinite film
    Satomi, Ryo
    Grassia, Paul
    Cox, Simon
    Mishuris, Gennady
    Lue, Leo
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2159):
  • [33] ON THE ANOMALOUS DIFFUSION BEHAVIOR IN DISORDERED MEDIA
    WANG, KG
    PHYSICA A, 1992, 182 (1-2): : 1 - 8
  • [34] DIFFUSION OF AN IONIZED IMPURITY IN A SEMI-INFINITE SEMICONDUCTOR
    MALKOVICH, RS
    POKOEVA, VA
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1978, 48 (01): : 241 - 248
  • [35] Single file diffusion into a semi-infinite tube
    Farrell, Spencer G.
    Brown, Aidan I.
    Rutenberg, Andrew D.
    PHYSICAL BIOLOGY, 2015, 12 (06)
  • [36] CONCENTRATED FORCES IN SEMI-INFINITE ANISOTROPIC MEDIA
    SAHA, S
    MUKHERJE.S
    CHAO, CC
    JOURNAL OF COMPOSITE MATERIALS, 1972, 6 (JUL) : 403 - &
  • [37] SURFACE POLARITONS ON SEMI-INFINITE GYROMAGNETIC MEDIA
    HARTSTEIN, A
    BURSTEIN, E
    MARADUDIN, AA
    BREWER, R
    WALLIS, RF
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1973, 6 (07): : 1266 - 1276
  • [38] VIBRATIONS OF ELASTIC INFINITE AND SEMI-INFINITE MEDIA CONTAINING CRACKS
    PAUL, HS
    JATRA, PR
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1976, 14 (01) : 127 - 141
  • [39] CAVITATION IN SEMI-INFINITE GRANULAR MEDIA.
    Harvey, R.C.
    Burley, E.
    Daniel, A.W.T.
    Civil Engineering, 1974, (812): : 52 - 53
  • [40] EDGE DISLOCATIONS IN SEMI-INFINITE ANISOTROPIC MEDIA
    PANDE, CS
    CHOU, YT
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1971, 6 (02): : 499 - &