Modelling anomalous diffusion in semi-infinite disordered systems and porous media

被引:17
|
作者
Metzler, Ralf [1 ,2 ]
Rajyaguru, Ashish [3 ]
Berkowitz, Brian [4 ]
机构
[1] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany
[2] Asia Pacific Ctr Theoret Phys, Pohang 37673, South Korea
[3] Paul Scherrer Inst, CH-5232 Villigen, Switzerland
[4] Weizmann Inst Sci, Dept Earth & Planetary Sci, IL-7610001 Rehovot, Israel
来源
NEW JOURNAL OF PHYSICS | 2022年 / 24卷 / 12期
关键词
diffusion; anomalous diffusion; breakthrough curves; constant boundary concentration; FRACTIONAL FICKS LAW; HETEROGENEOUS MEDIA; SINGLE MOLECULES; RANDOM-WALKS; TRANSPORT; EQUATIONS; MOTION; COEFFICIENTS;
D O I
10.1088/1367-2630/aca70c
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For an effectively one-dimensional, semi-infinite disordered system connected to a reservoir of tracer particles kept at constant concentration, we provide the dynamics of the concentration profile. Technically, we start with the Montroll-Weiss equation of a continuous time random walk with a scale-free waiting time density. From this we pass to a formulation in terms of the fractional diffusion equation for the concentration profile C(x, t) in a semi-infinite space for the boundary condition C(0, t) = C-0, using a subordination approach. From this we deduce the tracer flux and the so-called breakthrough curve (BTC) at a given distance from the tracer source. In particular, BTCs are routinely measured in geophysical contexts but are also of interest in single-particle tracking experiments. For the "residual' BTCs, given by 1- P(x, t), we demonstrate a long-time power-law behaviour that can be compared conveniently to experimental measurements. For completeness we also derive expressions for the moments in this constant-concentration boundary condition.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] MULTICOMPONENT DIFFUSION IN SEMI-INFINITE SYSTEMS
    CUSSLER, EL
    LIGHTFOOT, EN
    AICHE JOURNAL, 1963, 9 (06) : 783 - 785
  • [2] An analytical model for diffusion of chemicals under thermal effects in semi-infinite porous media
    Xie, Haijian
    Zhang, Chunhua
    Sedighi, Majid
    Thomas, Hywel R.
    Chen, Yunmin
    COMPUTERS AND GEOTECHNICS, 2015, 69 : 329 - 337
  • [3] THE FLOW AND DIFFUSION OF RADON ISOTOPES IN FRACTURED POROUS-MEDIA .2. SEMI-INFINITE MEDIA
    SCHERY, SD
    HOLFORD, DJ
    WILSON, JL
    PHILLIPS, FM
    RADIATION PROTECTION DOSIMETRY, 1988, 24 (1-4) : 191 - 197
  • [4] Monte Carlo modelling of fluorescence in semi-infinite turbid media
    Ong, Yi Hong
    Finlay, Jarod C.
    Zhu, Timothy C.
    OPTICAL INTERACTIONS WITH TISSUE AND CELLS XXIX, 2018, 10492
  • [5] Quantum diffusion in semi-infinite periodic and quasiperiodic systems
    Zhang Kai-Wang
    CHINESE PHYSICS B, 2008, 17 (03) : 1113 - 1118
  • [6] Quantum diffusion in semi-infinite periodic and quasiperiodic systems
    张凯旺
    Chinese Physics B, 2008, (03) : 1113 - 1118
  • [7] Analytical solution of coupled diffusion equations in semi-infinite media
    Fudym, O
    Batsale, JC
    Santander, R
    Bubnovich, V
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2004, 126 (03): : 471 - 475
  • [8] Mathematical Modelling of Unsteady Flow of Gas in a Semi-Infinite Porous Medium
    Mary, M. Lilly Clarance
    Saravanakumar, R.
    Lakshmanaraj, D.
    Rajendran, L.
    Lyons, M. E. G.
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (06):
  • [9] Analytical Solution for Solute Transport in Semi-Infinite Heterogeneous Porous Media
    Deng, B. Q.
    Qiu, Y. F.
    Kim, C. N.
    DIFFUSION IN SOLIDS AND LIQUIDS VI, PTS 1 AND 2, 2011, 312-315 : 495 - +
  • [10] AXISYMMETRIC SEEPAGE FLOW THROUGH SEMI-INFINITE POROUS MEDIA.
    Chandra, Satish
    Misra, H.C.
    Indian Geotechnical Journal, 1974, 4 (04): : 299 - 311