The reduced-order hybrid Monte Carlo sampling smoother

被引:17
|
作者
Attia, Ahmed [1 ]
Stefanescu, Razvan [1 ]
Sandu, Adrian [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Sci Computat Lab, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
data assimilation; Hamiltonian Monte Carlo; smoothing; reduced-order modeling; proper orthogonal decomposition; SHALLOW-WATER EQUATIONS; VARIATIONAL DATA ASSIMILATION; DYNAMIC-MODE DECOMPOSITION; NONLINEAR MODEL; INTERPOLATION METHOD; COHERENT STRUCTURES; REDUCTION; APPROXIMATION; STRATEGIES; TURBULENCE;
D O I
10.1002/fld.4255
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Hybrid Monte Carlo sampling smoother is a fully non-Gaussian four-dimensional data assimilation algorithm that works by directly sampling the posterior distribution formulated in the Bayesian framework. The smoother in its original formulation is computationally expensive owing to the intrinsic requirement of running the forward and adjoint models repeatedly. Here we present computationally efficient versions of the hybrid Monte Carlo sampling smoother based on reduced-order approximations of the underlying model dynamics. The schemes developed herein are tested numerically using the shallow-water equations model on Cartesian coordinates. The results reveal that the reduced-order versions of the smoother are capable of accurately capturing the posterior probability density, while being significantly faster than the original full-order formulation. Copyright (C) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:28 / 51
页数:24
相关论文
共 50 条
  • [31] Concepts in Monte Carlo sampling
    Tartero, Gabriele
    Krauth, Werner
    AMERICAN JOURNAL OF PHYSICS, 2024, 92 (01) : 65 - 77
  • [32] Reachability analysis of hybrid control systems using reduced-order models
    Han, Z
    Krogh, B
    PROCEEDINGS OF THE 2004 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2004, : 1183 - 1189
  • [33] A hybrid frequency-temporal reduced-order method for nonlinear dynamics
    Daby-Seesaram, A.
    Fau, A.
    Charbonnel, P. -E.
    Neron, D.
    NONLINEAR DYNAMICS, 2023, 111 (15) : 13669 - 13689
  • [34] A hybrid reduced-order model combing deep learning for unsteady flow
    Jia, Xuyi
    Li, Chunna
    Ji, Wen
    Gong, Chunlin
    PHYSICS OF FLUIDS, 2022, 34 (09)
  • [35] A hybrid frequency-temporal reduced-order method for nonlinear dynamics
    A. Daby-Seesaram
    A. Fau
    P.-É. Charbonnel
    D. Néron
    Nonlinear Dynamics, 2023, 111 : 13669 - 13689
  • [36] Reduced order modeling for accelerated Monte Carlo simulations in radiation transport
    Udagedara, Indika
    Helenbrook, Brian
    Luttman, Aaron
    Mitchell, Stephen E.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 267 : 237 - 251
  • [37] Scalable Sampling Methodology for Logic Simulation: Reduced-Ordered Monte Carlo
    Yu, Chien-Chih
    Alaghi, Armin
    Hayes, John P.
    2012 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN (ICCAD), 2012, : 195 - 201
  • [38] An efficient reduced-order framework for active/passive hybrid flutter suppression
    Li, D. F.
    Wang, Z. Z.
    Da Ronch, A.
    Chen, G.
    AERONAUTICAL JOURNAL, 2023, 127 (1307): : 24 - 40
  • [39] Monte Carlo and hybrid Monte Carlo molecular dynamics approaches to order-disorder in alloys, oxides, and silicates
    Purton, JA
    Barrera, GD
    Allan, NL
    Blundy, JD
    JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (26): : 5202 - 5207
  • [40] A hybrid reduced-order modeling technique for nonlinear structural dynamic simulation
    Yang, Chen
    Liang, Ke
    Rong, Yufei
    Sun, Qin
    AEROSPACE SCIENCE AND TECHNOLOGY, 2019, 84 : 724 - 733