Real-time Detection of Aortic Valve in Echocardiography using Convolutional Neural Networks

被引:13
|
作者
Nizar, Muhammad Hanif Ahmad [1 ]
Chan, Chow Khuen [1 ]
Khalil, Azira [2 ]
Yusof, Ahmad Khairuddin Mohamed [3 ]
Lai, Khin Wee [1 ]
机构
[1] Univ Malaya, Fac Engn, Dept Biomed Engn, Jalan Univ, Kuala Lumpur 50603, Malaysia
[2] Islamic Sci Univ Malaysia, Dept Appl Phys, Nilai 71800, Negeri Sembilan, Malaysia
[3] Natl Heart Inst, Kuala Lumpur 50400, Malaysia
关键词
Aortic valve; heart valve; echocardiography; cardiology; convolutional neural network; deep learning; DIAGNOSIS; DISEASE;
D O I
10.2174/1573405615666190114151255
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Valvular heart disease is a serious disease leading to mortality and increasing medical care cost. The aortic valve is the most common valve affected by this disease. Doctors rely on echocardiogram for diagnosing and evaluating valvular heart disease. However, the images from echocardiogram are poor in comparison to Computerized Tomography and Magnetic Resonance Imaging scan. This study proposes the development of Convolutional Neural Networks (CNN) that can function optimally during a live echocardiographic examination for detection of the aortic valve. An automated detection system in an echocardiogram will improve the accuracy of medical diagnosis and can provide further medical analysis from the resulting detection. Methods: Two detection architectures, Single Shot Multibox Detector (SSD) and Faster Regional based Convolutional Neural Network (R-CNN) with various feature extractors were trained on echocardiography images from 33 patients. Thereafter, the models were tested on 10 echocardiography videos. Results: Faster R-CNN Inception v2 had shown the highest accuracy (98.6%) followed closely by SSD Mobilenet v2. In terms of speed, SSD Mobilenet v2 resulted in a loss of 46.81% in frames-per-second (fps) during real-time detection but managed to perform better than the other neural network models. Additionally, SSD Mobilenet v2 used the least amount of Graphic Processing Unit (GPU) but the Central Processing Unit (CPU) usage was relatively similar throughout all models. Conclusion: Our findings provide a foundation for implementing a convolutional detection system to echocardiography for medical purposes.
引用
收藏
页码:584 / 591
页数:8
相关论文
共 50 条
  • [21] Real-time license plate detection and recognition using deep convolutional neural networks
    Silva, Sergio Montazzolli
    Jung, Claudio Rosito
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2020, 71
  • [22] PIPELINE RUPTURE DETECTION USING REAL-TIME TRANSIENT MODELLING AND CONVOLUTIONAL NEURAL NETWORKS
    Smith, Joel
    Chae, Jaehee
    Learn, Shawn
    Hugo, Ron
    Park, Simon
    PROCEEDINGS OF THE 12TH INTERNATIONAL PIPELINE CONFERENCE, 2018, VOL 3, 2018,
  • [23] Automatic aortic valve area detection in echocardiography images using convolutional neural networks and U-net architecture for bicuspid aortic valve recognition
    Giannakaki, Katerina
    Moirogiorgou, Konstantia
    Zervakis, Michalis
    Anousakis-Vlachochristou, Nikolaos
    Matsopoulos, George K.
    Komporozos, Christoforos
    Sourides, Vasileios
    Katsimagklis, Georgios
    Drakopoulou, Maria
    Toutouzas, Konstantinos
    Avgeropoulou, Catherine
    Androulakis, Aristeidis
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), 2021,
  • [24] Real-Time Age Detection Using a Convolutional Neural Network
    Sithungu, Siphesihle
    Van der Haar, Dustin
    BUSINESS INFORMATION SYSTEMS, BIS 2019, PT II, 2019, 354 : 245 - 256
  • [25] Intelligent and Real-Time Detection and Classification Algorithm for Recycled Materials Using Convolutional Neural Networks
    Ziouzios, Dimitris
    Baras, Nikolaos
    Balafas, Vasileios
    Dasygenis, Minas
    Stimoniaris, Adam
    RECYCLING, 2022, 7 (01)
  • [26] Real-time surgical needle detection using region-based convolutional neural networks
    Atsushi Nakazawa
    Kanako Harada
    Mamoru Mitsuishi
    Pierre Jannin
    International Journal of Computer Assisted Radiology and Surgery, 2020, 15 : 41 - 47
  • [27] Real-Time Brazilian License Plate Detection and Recognition Using Deep Convolutional Neural Networks
    Montazzolli, Sergio
    Jung, Claudio
    2017 30TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 2017, : 55 - 62
  • [28] Real-time surgical needle detection using region-based convolutional neural networks
    Nakazawa, Atsushi
    Harada, Kanako
    Mitsuishi, Mamoru
    Jannin, Pierre
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2020, 15 (01) : 41 - 47
  • [29] Real-Time Object Detection for AUVs Using Self-Cascaded Convolutional Neural Networks
    Song, Yan
    He, Bo
    Liu, Peng
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2021, 46 (01) : 56 - 67
  • [30] Using 3D Convolutional Neural Networks for Real-time Detection of Soccer Events
    Rongved, Olav A. Nergard
    Hicks, Steven A.
    Thambawita, Vajira
    Stensland, Hakon K.
    Zouganeli, Evi
    Johansen, Dag
    Midoglu, Cise
    Riegler, Michael A.
    Halvorsen, Pal
    INTERNATIONAL JOURNAL OF SEMANTIC COMPUTING, 2021, 15 (02) : 161 - 187